EAS Journal of Radiology and Imaging Technology

Abbreviated Key Title: EAS J Radiol Imaging Technol ISSN: 2663-1008 (Print) & ISSN: 2663-7340 (Online) Published By East African Scholars Publisher, Kenya

Volume-7 | Issue-6 | Nov-Dec-2025 |

DOI: https://doi.org/10.36349/easjrit.2025.v07i06.004

Original Research Article

A Retrospective Review of Individuals Referred for Imaging with Suspected Lung Malignancy in Tanzania: Aspects of the Multi-National Lung Cancer Control Program

Patrick S. Ngoya^{1*}, Ziad A. Byekwaso², Shija Mahenda³, Petite Epimack⁴, Praybenadetha Pallangyo⁴, Franco Afyusisye⁴, Evarist Msaki⁴, Lucas Faustine⁴, Jackson Kahima⁵, Nestory A. Masalu⁴

Article History

Received: 02.10.2025 Accepted: 20.11.2025 Published: 27.11.2025

Journal homepage: https://www.easpublisher.com

Abstract: Background: Lung cancer is the leading cause of cancer-related mortality worldwide and the tenth leading cause of death in Tanzania. Minimally invasive lung biopsy procedures using CT or bronchoscopy are now available in Tanzania. There is paucity of data on imaging outcomes of individuals referred for imaging with suspected lung malignancy. The aim of this study was to retrospectively review individuals referred for imaging with suspected lung malignancy from 1 January 2019 to 31 December 2024. Materials and Methods: This was a retrospective cross-sectional study on adult individuals that were referred for imaging with suspected lung malignancy. Data was retrieved from the Multinational Lung Cancer Control Program in the Lake Zone research database. Frequencies or proportions were used for categorical variables. Pearson's chi square test and logistic regression analysis was used to determine association factors of malignancy. **Results:** Around 512 individuals were enrolled with median age (IQR) of 56 (43 – 67) years. About 55.6% (273 out 495) presented with a mass on imaging. Of which, 87.2% (238 out 273) underwent biopsy based on visualization of a mass on imaging. Majority of the biopsied masses were malignant (62.6%) while the rest were benign (28.2%) and indeterminate (9.2%) lesions. On regression analysis, a mass on imaging had the highest likelihood on being malignant (aOR (95% CI) =14.0 (8.5 - 23.1). Conversely, features of tuberculosis on imaging had the least likelihood on being malignant (aOR (95% CI) = 0.59 (0.01 - 0.27). *Conclusion*: Visualization of a mass on imaging was highly predictive of malignancy, especially in the absence of features of tuberculosis. Indeterminate lesions posed diagnostic challenges due to lack of advanced imaging and molecular testing in our settings. Keywords: Lung Cancer, Imaging, CXR, CT, Biopsy, Outcomes.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Introduction

Lung cancer is the top leading malignancy and the tenth leading cause of death worldwide and in Tanzania respectively [1, 2]. Cigarette smoking is the most prevalent lung cancer risk factor, although environmental exposures, such as biomass fuels, asbestos, arsenic and radon, are all important lung factor risk factors with levels of exposure that vary widely across the globe [3]. Various imaging modalities are available for the detection of lung cancer but the chest radiograph (CXR) is the first line and readily available

imaging modality in low- and middle-income countries (LMICs). A systematic review and meta-analysis has shown that the CXR has a sensitivity of 81% and specificity of 68% for the detection of lung malignancy in a symptomatic primary-care population with a negative CXR not able to exclude lung malignancy [4]. Computed tomography (CT) is a modality used for lung cancer screening, diagnosis and staging due to its high resolution and with improved sensitivity of 98.8% and specificity of 99.6% when artificial intelligence (AI) is employed [5]. It is worth noting that in LMICs where resources are limited, challenges in accessing medical

¹Department of Radiology, Catholic University of Health and Allied Sciences, Mwanza Tanzania

²Department of Radiology, Bugando Medical Centre, Mwanza Tanzania

³Department of Cardiothoracic Surgery, Catholic University of Health and Allied Sciences, Mwanza Tanzania

⁴Department of Oncology, Bugando Medical Centre, Mwanza Tanzania

⁵Department of Pathology, Bugando Medical Centre, Mwanza Tanzania

imaging by deserving populations may be the norm [6]. Therefore, CT services may not be always available or accessible in many primary care healthcare facilities. Lung biopsy is crucial in the retrieval of histological specimens that confirm presence and type of lung malignancy, and thus determining management [7]. Minimally invasive lung biopsy procedures using CT or bronchoscopy are now available in Tanzania. There is paucity of data on imaging outcomes of individuals referred for imaging with suspected lung malignancy. Therefore, this study aimed to retrospectively review individuals referred for imaging with suspected lung malignancy in Tanzania.

MATERIALS AND METHODS

Study Design, Duration and Setting

This was a hospital based retrospective crosssectional study that was carried out between August and October 2025 at Bugando Medical Centre in Mwanza Tanzania.

Study Population

All adult individuals that were referred for imaging with suspected lung malignancy.

Eligibility Criteria

All adult (18 years and older) individuals, that were referred for imaging with suspected lung malignancy from 1 January 2019 to 31 December 2024 included. Individuals with missing data were excluded.

Study Variables

Exposure variables included age, sex, features of tuberculosis (Tb) or mass on imaging. Outcome variable was presence of lung malignancy.

Sample Size

All adult individuals that were referred for imaging with suspected lung malignancy.

Data Collection and Procedures

Data was retrieved from the Multi-national Lung Cancer Control Program in the Lake Zone research

database. Data was anonymized and entered into Microsoft Excel (Microsoft Corporation, USA). CXR was acquired on GE XR-6000 X-ray machine (GE Hualun Medical Systems Co. Ltd, China). Contrasted CT that included the chest and upper abdomen was acquired by a 128 slice CT scanner (Siemens Healthineers, Germany) or 64 slice CT scanner (GE Healthcare Corporation, Japan). All images were reported by an experienced radiologist. Any mass on imaging underwent biopsy. Biopsy was either done under CT imaging guidance using a transthoracic 18 gauge coaxial needle at the radiology department or by bronchoscopy at the cardiothoracic surgery department depending on the location of mass. All biopsies were done by specialists to ensure optimal sampling and avoid potential procedural complications such as bleeding or pneumothorax. Biopsy specimens were immediately stored in a labeled 10% formalin container and sent to histopathology for processing, interpretation and reporting by an experienced pathologist.

Data management and Statistical Analysis

Data was exported to Stata version 17 (StataCorp LLC, USA) for cleaning and analysis. Any missing data was excluded from analysis. Data was presented as mean with standard deviation (SD) or median with interquartile range (IQR) for continuous variables. Frequencies or proportions were used for categorical variables. Pearson's chi square test (χ^2) or Fisher's exact test was applied to determine associations between exposure and outcome variables. Univariate and multivariate logistic regression analysis was further applied to determine the odds of malignancy. A p-value of <0.05 was considered statistically significant.

Ethical Consideration

The study clearance was requested and approved by the CUHAS/BMC Research and Ethical Committee (No. CREC/868/2024).

RESULTS

Out of the 525 individuals assessed for eligibility, only 512 individuals were enrolled (Figure 1).

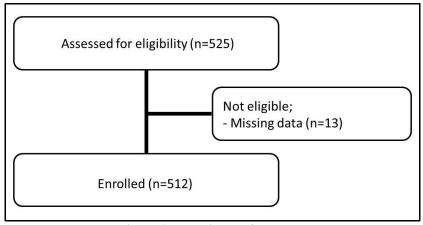


Figure 1: Recruitment flow chart

Individuals had an age range of 18 to 98 years old and age median (IQR) of 56 (43 - 67) years. Majority of the individuals were males (54.9%) and older than 40 years old (77.9%). Around 55.6% (273 out 495)

presented with a mass on imaging. Around 87.2% (238 out 273) underwent biopsy based on visualization of a mass on imaging (Table 1).

Table 1: Baseline Characteristics (n=512)

Variable	Category	n (%)
Age, years	18 - 40	113 (22.1)
	≥41	399 (77.9)
Sex	Female	231 (45.1)
	Male	281 (54.9)
CXR (n=505)	No	73 (14.5)
	Yes	432 (85.5)
CT Chest (n=506)	No	106 (20.9)
	Yes	400 (79.1)
Tb on imaging (n=486)	No	436 (89.7)
	Yes	50 (10.3)
Mass on imaging (n=495)	No	222 (44.9)
	Yes	273 (55.6)
Both Tb and mass on imaging (n=474)	No	465 (98.1)
	Yes	9 (1.9)
Biopsy (n=273)	No	35 (22.9)
	Yes	238 (87.1)

Tb, tuberculosis; CXR, chest X-ray; CT, computed tomography.

Of the individuals who underwent biopsy, majority of the biopsied masses were malignant (62.6%) when compared to benign (28.2%) and indeterminate (9.2%) lesions. The most common malignant histology was non-small cell lung carcinoma (NSCLC) at 50.4%

followed by small cell lung carcinoma (SCLC) at 4.2% (Figure 2). Majority (56%) of individuals presented at advanced stages (Figure 3). Tb or mass on imaging was significantly associated with malignancy (p<0.001) (Table 2).

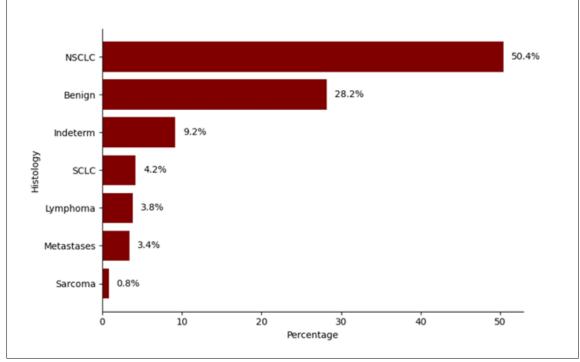


Figure 2: Bar graph showing histological categories after biopsy (n=238)

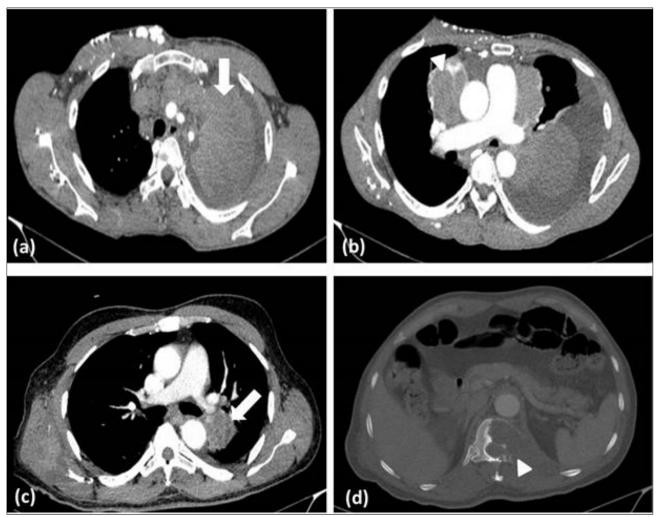


Figure 3: Figure 3: Contrasted CT axial images illustrating advanced stages of NSCLC. Images (a) and (b) showing left upper lobe mass (white arrow) with tumor encroaching into and completely attenuating the lumen of the superior vena cava (white arrowhead) causing superior vena cava syndrome in a 57 years old male. Images (c) and (d) showing a left hilar mass (white arrow) and a destructive lytic bony lesion involving the left aspect of T12 vertebral body and the left costovertebral junction (white arrowhead) in a 66 years old male

Table 2: Factors associated with malignancy

Table 2. Factors associated with manginancy							
Variable	Category	Malignant		χ^2	р		
		No, n (%)	Yes, n (%)				
Age, years (n=486)	18 - 40	62 (58.5)	44 (41.5)	1.83	0.18		
	≥41	194 (51.0)	186 (49.0)				
Sex (n=486)	Female	111 (50.2)	110 (49.8)	0.97	0.32		
	Male	145 (54.7)	120 (45.3)				
Tb on imaging (n=482)	No	207 (47.6)	228 (52.4)	*	< 0.001		
	Yes	45 (95.7)	2 (4.3)				
Mass on imaging (n=472)	No	172 (84.3)	32 (15.7)	149.2	< 0.001		
	Yes	74 (27.6)	194 (72.4)				

Tb, tuberculosis. * Fisher's exact test

On further analysis using univariate and multivariate logistic regression, a mass on imaging had the highest likelihood on being malignant (aOR (95% CI) = 14.0 (8.5 - 23.1), p<0.001). Conversely, distinctive

features of Tb on imaging had the least likelihood on being malignant (aOR (95% CI) = 0.59 (0.01 - 0.27), p<0.001) (Figure 4).

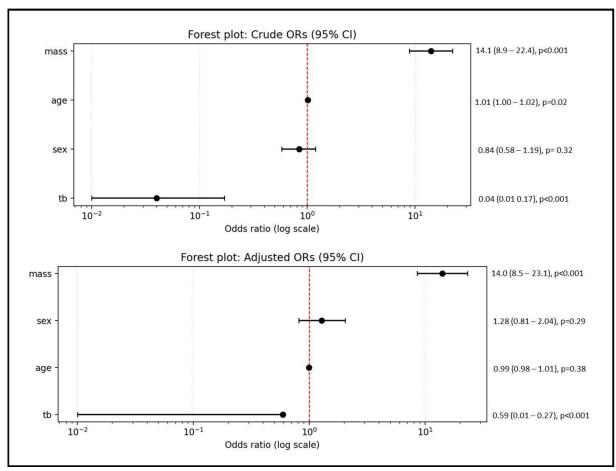


Figure 4: Forest plots showing odds of malignancy according to age, sex, Tb or mass on imaging

DISCUSSION

Majority of the individuals who underwent biopsy had malignant lesions (63%) while minority of the suspected masses turned to be benign (28%) or indeterminate (9%). This demonstrated an above average index of suspicion of malignancy detection on imaging. Half of the malignant lesions on histology were NSCLC, which was the commonest lung malignancy, followed by SCLC almost analogous to other reported studies [8, 9].

In our study, a mass on imaging was fourteenfold most likely to be malignant whereas, individuals who had distinctive features of Tb on imaging were least likely to have malignancy. In published studies that compared the differences in imaging features between individuals with Tb alone and individuals with Tb complicated with lung cancer, CT had an effective value in distinguishing Tb alone from Tb complicated with lung cancer [10,11].

Some lesions seen on CT in our study, such as lymphoma and metastases which constituted 7% of the study population, masqueraded as lung cancer on imaging but were only detected on histology. Lymphoma is renowned for encasing rather than invading anatomical structures. Rarely, lymphoma has been reported to invade the pulmonary vein and left atrium with tumor

thrombus formation suggestive of advanced lung cancer [12]. For indeterminate lesions, it was rather difficult to get to the final diagnosis due to resource limitations at our hospital, as such lesions required advanced whole imaging such as positron emission tomography/computed tomography (PET/CT) diffusion weighted imaging (DWI) which were lacking. PET/CT and DWI which have been primarily used as diagnostic tools for lung cancer with a move towards utility of artificial intelligence [13]. Molecular testing can also be used by pathologists to resolve indeterminate lesions using various recommended biomarkers [14].

Our study gives an insight into imaging outcomes of individuals referred with suspected lung malignancy where a significant proportion of individuals presented at advanced stage of disease. In our setting, most individuals who present with chest symptoms were sometimes misdiagnosed as Tb in peripheral hospitals and placed on Tb drug regimens for months without any significant response. Non-response to Tb treatment, in most favourable circumstances, the attending clinician may refer the patient to other hospitals in search for alternate diagnoses such lung cancer. However, least favourable circumstances drive individuals to seek alternative treatment elsewhere which may not be limited to traditional or spiritual healers [15]. All in the end, compounded by poor access or unavailability of

diagnostic imaging services [6], may contribute to delay in diagnosis of lung cancer and late presentation of disease.

CONCLUSION

Visualization of a mass on imaging was highly predictive of malignancy, especially in the absence of features of tuberculosis. Indeterminate lesions posed diagnostic challenges due to lack of advanced imaging and molecular testing in our settings.

Contributors

The study was conceived and designed by PSN and NAM. All authors contributed to the data collection, analysis and/or interpretation of the findings. PSN drafted the first version of the manuscript. All authors reviewed and revised the manuscript for intellectual content and approved the final version for submission.

Acknowledgments

We acknowledge all collaborators and staff from the Multi-national Lung Cancer Control Program. We also would like to thank the members of staff from the Departments of Cardiothoracic Surgery, Oncology, Pathology and Radiology at Bugando Medical Centre for their technical support during this study.

Competing Interests: All authors declare no conflict of interests.

Funding

This research grant was received from Bristol Myers Squibb Foundation under the Multi-national Lung Cancer Control Program.

Data Availability

The de-identified participant data, data sets generated and analyzed are available from the corresponding author upon a reasonable and ethical request.

REFERENCES

- Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2024 May;74(3):229-63. doi: 10.3322/caac.21834
- 2. Mremi A, Ndumbalo J, Chuwa H, Henke O, Rost M. Lung Cancer in Tanzania. Journal of Thoracic Oncology. 2025 May 1;20(5):560-4. doi: 10.1016/j.jtho.2025.02.002
- 3. Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nature reviews Clinical oncology. 2023 Sep;20(9):624-39. doi: 10.1038/s41571-023-00798-3
- 4. Dwyer-Hemmings L, Fairhead C. The diagnostic performance of chest radiographs for lung malignancy in symptomatic primary-care

- populations: a systematic review and meta-analysis. BJR| Open. 2021 Jul 16;3(1):20210005. doi: 10.1259/bjro.20210005
- Crasta LJ, Neema R, Pais AR. A novel Deep Learning architecture for lung cancer detection and diagnosis from Computed Tomography image analysis. Healthcare Analytics. 2024 Jun 1;5:100316. doi: 10.1016/j.health.2024.100316
- Shem SL, Ugwu AC, Hamidu AU, Flavious NB, Ibrahim MZ, Zira DJ. Challenges, opportunities and strategies of global health radiology in low and middle-income countries (LMICs): an excerpt review. J Cancer Prev Curr Res. 2022;13(1):14–20. doi: 10.15406/jcpcr.2022.13.00480
- Moreira RS, de Melo Vasconcelos CF, Pereira MC, das Neves RF, da Silva TD, da Silva MM, de Lucena RM, de Souza SM, Cordeiro GG, de Farias YB, Pegado CB. Lung Cancer Diagnosis: Where we are and where we will Go? Classical and Innovative Applications in the Diagnosis of Lung Cancer. InIntelligent Diagnosis of Lung Cancer and Respiratory Diseases 2022 Jul 13 (pp. 226-274). Bentham Science Publishers. doi: 10.2174/97898150505091220101
- 8. Zhang Y, Vaccarella S, Morgan E, Li M, Etxeberria J, Chokunonga E, Manraj SS, Kamate B, Omonisi A, Bray F. Global variations in lung cancer incidence by histological subtype in 2020: a population-based study. The Lancet Oncology. 2023 Nov 1;24(11):1206-18.
- Moghanaki D, Taylor J, Bryant AK, Vitzthum LK, Sebastian N, Gutman D, Burns A, Huang Z, Lewis JA, Spalluto LB, Williams CD. Lung cancer survival trends in the veterans health administration. Clinical lung cancer. 2024 May 1;25(3):225-32. doi: 10.1016/j.cllc.2024.02.009
- Sun W, Zhang L, Liang J, Li X, Yang Y, Sun W, Hou J. Comparison of clinical and imaging features between pulmonary tuberculosis complicated with lung cancer and simple pulmonary tuberculosis: a systematic review and meta-analysis. Epidemiology & Infection. 2022 Jan;150:e43. doi: 10.1017/s0950268822000176
- 11. Tang W, Xing W, Li C, Nie Z, Cai M. Differences in CT imaging signs between patients with tuberculosis and those with tuberculosis and concurrent lung cancer. American Journal of Translational Research. 2022 Sep 15;14(9):6234. PMID: 36247264; PMCID: PMC9556475.
- 12. Ng HZ, Cheng LT, Ngam PI, Sinha AK, Loi HY. Lymphoma masquerading as lung cancer. Clinical Nuclear Medicine. 2023 Jun 1;48(6):520-1. doi: 10.1097/RLU.00000000000004636
- 13. Owens CA, Hindocha SU, Lee RI, Millard TH, Sharma BH. The lung cancers: staging and response, CT, 18F-FDG PET/CT, MRI, DWI: review and new perspectives. The British Journal of Radiology. 2023 Jul 1;96(1148):20220339. doi: 10.1259/bjr.20220339

- 14. Cooper WA, Amanuel B, Cooper C, Fox SB, Graftdyk JW, Jessup P, Klebe S, Lam WS, Leong TY, Lwin Z, Roberts-Thomson R. Molecular testing of lung cancer in Australia: consensus best practice recommendations from the Royal College of Pathologists of Australasia in collaboration with the Thoracic Oncology Group of Australasia. Pathology. 2025 Feb 14. doi: 10.1016/j.pathol.2025.02.001
- 15. Msoka EF, Abraham M, Mulder BC, Beavers A, Gebremariam A, Bright FB, Serventi F, Cyril PM, Kitali BM, Saria VF, Masenga GG. The perspectives of healthcare providers, traditional healers, and other key informants on the late diagnosis of breast cancer in northern Tanzania: a qualitative study. Discover Public Health. 2025 Sep 8;22(1):527. doi: 10.1186/s12982-025-00920-z

Cite This Article: Patrick S. Ngoya, Ziad A. Byekwaso, Shija Mahenda, Petite Epimack, Praybenadetha Pallangyo, Franco Afyusisye, Evarist Msaki, Lucas Faustine, Jackson Kahima, Nestory A. Masalu (2025). A Retrospective Review of Individuals Referred for Imaging with Suspected Lung Malignancy in Tanzania: Aspects of the Multi-National Lung Cancer Control Program. *EAS J Radiol Imaging Technol*, 7(6), 202-208.