East African Scholars Journal of Medicine and Surgery

Abbreviated Key Title: EAS J Med Surg ISSN: 2663-1857 (Print) & ISSN: 2663-7332 (Online) Published By East African Scholars Publisher, Kenya

Volume-7 | Issue-11 | Nov-2025 |

DOI: https://doi.org/10.36349/easjms.2025.v07i11.002

Original Research Article

Assessment of Foot Deformity and the Associated Factors among Type 2 Diabetes Mellitus Out-patients: The Scenario from a Tertiary Health Care Facility in South-Eastern Nigeria

Chidiebele Malachy Ezeude^{1*}, Afoma Marypaula Ezeude², Henry Emeka Ikeabbah³, Harriet Chinwe Nwadimkpa⁴

Article History

Received: 07.09.2025 **Accepted:** 03.11.2025 **Published:** 05.11.2025

Journal homepage: https://www.easpublisher.com

Abstract: *Background:* Diabetes mellitus foot deformities (FD) comprise all the pathological changes in the foot of a person with diabetes mellitus. The current global burden of FD is worrisome and contributes to the global burden of disability and reduction in the quality of life. Objectives: This study evaluated the prevalence, spectrum of foot deformity and the associated risk factors in subjects with type 2 DM. Materials and Methods: This was a descriptive crosssectional study involving 98 consenting T2DM subjects at Nnamdi Azikiwe University Teaching Hospital, Nnewi, South-eastern Nigeria. Relevant sociodemographic, clinical and Diabetic Neuropathy Symptom (DNS) score data were collected using a structured questionnaire and the DNS questionnaire. Clinical evaluations that included detailed foot, anthropometric, blood pressure measurements, biothesiometry, monofilament testing and lower limb doppler ultrasonography were done. Data was analysed using SPSS version 25. Result: A total of 98 T2DM subjects were evaluated and comprised 51% and 49% male and female subjects, respectively, with a mean age of 59.61 ± 11.62 years and mean DM duration of 11.11 ± 8.48 years. A total of 62.2% of the subjects had foot deformity, of which 30.6%, 4.1%, 13.3%, 8.2%, 7.1% and 4.1% had prominent metatarsal head, pes cavus, pes planus, claw toe, hammer toe, and mallet toe, while 11.2%, 4.1%, 9.2%, 4.1%, 2.0%, 43.95, 3.1%, 1.0% and 28.6% of the subjects had hallus rigidus, hallus varus, hallus valgus (bunion), bunionette, Charcot foot, muscle atrophy, disarticulation, amputation and limited joint mobility, respectively. Foot deformity showed significant association with the age of the subjects, educational level, DM duration, glycaemic control, global obesity and presence of neuropathy. Conclusion: The prevalence of FD in T2DM subjects from this study was very high and FD was significantly associated with some modifiable risk factors that included educational level, glycaemic control and global obesity which could be potential targets for therapeutic interventions for foot deformity.

Keywords: Assessment, Associated Factors, Diabetes Mellitus, Foot Deformity, Nigeria.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Introduction

Diabetes mellitus is a very prevalent metabolic disorder with chronic multi-systemic complications, the musculoskeletal system inclusive. The chronic complications of DM result from vascular and nervous damage. The foot is an integral part of the musculoskeletal system and a complex terminal structure of the lower extremity that comprises several bony structures, muscles, joints, ligaments, tendons and neurovascular bundles [1]. The steadily rising prevalence

of diabetes mellitus (DM), more especially type 2 diabetes mellitus (T2DM) has increased the number of the persons living with diabetes that come down with the chronic complications of diabetes mellitus, including vascular and neuropathic sequalae. Pandey *et al.*, had earlier found that foot deformity was more in diabetic subjects compared to the non-diabetic population [2]. Diabetes mellitus foot deformities are a component of diabetes mellitus foot syndrome (DFMS) which comprise all the pathological changes in the foot of a

¹Department of Internal Medicine, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

²Department of Nursing Sciences, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria

³Department of Surgery, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

⁴Department of Internal Medicine, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria

person with diabetes mellitus. They are among the most prevalent chronic complications of T2DM that result potentially due to diabetic sensorimotor neuropathy and peripheral artery disease and often lead to diabetic foot ulcers (DFUs) and possible lower extremity amputations (LEAs) [3].

The foot is an anatomically complex structure and corresponds to the portion of the lower extremity distal to the ankle. It comprises over 26 individual bones, 30 joints, numerous tendons, ligaments, and muscles [4]. The foot, in combination with the ankle and the long bones of the lower limb, has a total of thirty-three joints [5]. All these structures are responsible for the ability to stand upright, support the weight of the entire body and provide the base for the mechanism of pedal gait and motion. The foot is divided into hind, mid and forefoot. There are number of articulations which facilitate motion of the foot and the articular surfaces of each of the bones are increased by hyaline cartilage [5]. Each joint is invested by a capsule and supported by ligaments. The ankle joint complex is made up of the talocalcaneal (subtalar), tibiotalar (talocrural) and transverse-tarsal (talocaneonavicular) joints [6].

Nerve damage could weaken the intrinsic muscles of the foot, leading to structural changes in the bones of the foot, their joints, and the articulation leading to abnormal foot pressures, abnormal joints mobility, foot deformity, gait abnormalities and trauma [7]. In Germany, more than 50% of all the cases of DMFS results from PAD, which is usually asymptomatic, being masked by a co-existing peripheral neuropathy [3].

Diabetic foot deformity is usually referred to as "foot at risk" of ulceration [8]. They include, but are not limited to claw toes, hammer toes, hallus valgus, hallus varus and prominent metatarsal heads.

The current global burden of diabetic foot disease is worrisome. The life time risk of developing diabetic foot ulceration was between 19% - 34% and approximately 65% of the patients with DFU have a recurrence within 3 - 5 years after healing buttressing the fact that recurrence was common after ulcer healing [9]. The prevalence of Charcot neuroarthropathy, a foot deformity characterized by bone and joint disarticulation in the background of neuropathy was 0.1 - 4% and increased to 35% in patients with peripheral neuropathy [10, 11].

In western Nigeria, the prevalence of DM patients with the foot at risk was 41.5%, while that of DFU was 17.3% [12, 13]. In Southwestern Nigeria the prevalence of DMFU among T2DM subjects was 18.7% [14]. In Northern Nigeria, the prevalence of DFU among T2DM subjects was 14.5% [15]. A multicenter study in Nigeria found that 79.2% of the patients with DFU presented late to the hospital and 10.4% suffered lower extremity amputation [16].

Ababneh *et al.*, found that among diabetic patients in Jordan, 17.4%, 16.9%, 14.2%, 0.4%, 3.2%, 2.1% and 1.7% had hallux valgus, claw/hammer toe, limited joint mobility, pes carvus, Charcot foot and amputation, respectively [17].

The economic burden exerted on the health care system by diabetic foot deformity, more especially DFUs and amputations is enormous and is still soaring. This includes direct and indirect costs, with loss of personal earnings and the burden of care givers [18]. Diabetic mellitus foot abnormalities also contribute the global burden of disability and reduction in the quality of life, designating it a considerable public health problem [18].

A search of the existing literature revealed that most of the studies done on foot abnormalities in the diabetic subjects were on DFUs and its feared sequalae, which is disarticulations and amputations. Foot deformity in the setting of DM places the foot at risk of worsening complications and is the prelude to ulceration and amputation. Hence, early diagnosis of the structural and functional diabetic foot deformities and their prompt treatment at the "pre-ulcerative" stage will avert the occurrence of further debilitations, including amputations, reduced quality of life and the attendant morbidity and mortality.

There is a dearth of the studies that evaluated the spectrum of foot deformity in type 2 diabetic subjects globally and more especially in the sub-Saharan Africa. This study aimed at evaluating the prevalence and spectrum of foot deformity and the associated risk factors In subjects with type 2 DM at Nnamdi Azikiwe University Teaching Hospital, Nnewi in South-eastern Nigeria.

MATERIALS AND METHODS

This study was carried out at the diabetes outpatient clinic of Nnamdi Azikiwe University Teaching Hospital (NAUTH), Nnewi, Anambra State, Nigeria. The study population consisted of consenting 98 subjects with type 2 diabetes aged 18 years and above. The study was carried out from May, 2021 to February, 2022.

The inclusion criteria for the study subjects were: all consenting subjects with T2DM aged 18 years and above. The exclusion criteria were: subjects that were less than 18 years of age, had type 1 DM, gestational diabetes mellitus (GDM) or were very sick.

Study Design

This was a cross-sectional, descriptive study. Subjects' recruitment into the study was via simple random sampling technique. All the subjects with T2DM who met the inclusion criteria, had none of the exclusion criteria and gave a formal informed consent to participate in the study were recruited consecutively into the study during clinic consultations. A total of 106 subjects were recruited into the study, 8 subjects had incomplete results

and were dropped, while the 98 subjects had complete data and were analysed.

The study was carried out in two phases and the researcher had two contacts with the subjects on two separate clinic days.

At the first contact, informed consent was obtained, a focused medical history was taken, anthropometric and blood pressure measurements were done. A detailed physical examination of the feet was done to clinically diagnose foot deformities and the subjects were then assisted by the researcher to fill out the Diabetic Neuropathy Symptom (DNS) score questionnaire to screen for diabetic peripheral neuropathy, and the Nottingham Assessment of Functional Footcare (NAFF) questionnaire to assess the subjects' foot care behavior. Next, ultrasonographic assessment of the brachial, and the pedal arteries were done using the pocket Doppler device, to determine the ankle brachial pressure index (ABPI). Biothesiometry was also done to measure the vibration perception threshold (VPT), which was used to objectively determine the presence of diabetic peripheral sensory neuropathy. DNS score > 1 confirmed the presence of neuropathic symptoms and defined DPN [19]. NAFF score above 50 indicated a satisfactory (good) foot care behavior. Scores below 50 suggested poor foot care behavior and that foot care behavior should be further evaluated [20].

Laboratory Procedure

At the second contact with the subjects, 5ml of venous blood was collected from each subject via venipuncture of the cubital vein, following aseptic procedure. This was after they had observed a fast of about 8 - 14 hours based on the instructions they were given during the first meeting. 1 ml of blood for fasting plasma glucose (FBG) was collected in fluoride oxalate bottles and measured by the Trinder glucose oxidase method [21]. 1 ml of blood for glycated haemoglobin (HbA1c) assay was stored in ethylenediaminetetraacetic acid (EDTA) bottle and measured using the boronate affinity chromatography method using the automated CLOVER A1c Analyzer (Infopia, Korea) and CLOVER A1c Self-Test Cartridge [22].

The remaining 3 ml of blood was stored in plain bottle and used for fasting lipid profile assay.

High density lipoprotein (HDL-C) was obtained by a precipitation technique [23].

Total cholesterol level was determined using the kit employing the enzymatic and the 4-hydroxybenzoate/4-aminophenazone systems (BioSystems) [24].

Triglyceride level was determined using a kit employing enzymatic hydrolysis of triglyceride with

lipases (Randox) [25]. Low density lipoprotein cholesterol (LDL-C) was measured using a kit employing a precipitation technique [26].

Clinical Procedure

Doppler ultrasonographic assessment of the brachial, dorsalis pedis and posterior tibial arteries were done, using EDAN SONOTRAX Ultrasonic Pocket Doppler version 1.2 (CE 0123) with 8.0 MHz probe and an Accoson mercury Sphygmomanometer [27, 28]. Ankle brachial pressure index (ABPI) was calculated using the formular: ABPI for a leg = Higher pressure obtained from the ankle vessel in that leg / Higher systolic brachial pressure of the arms [29].

Peripheral artery disease (PAD) was taken as $ABPI \le 0.9$ [29].

The biothesiometer was used to measure the vibration perception threshold (VPT), which was used for determining the presence of diabetic peripheral neuropathy in the subjects. With the patient lying supine in a couch, testing was done by applying the vibrator of the biothesiometer to the pulp of the big toe of each foot. The vibrator was steadily held, such that, its weight delivered a standard pressure on the vibrator button with the probe balanced vertically on the pulp of the big toe. The subject was instructed to concentrate fully on the procedure and to verbally report the first feeling of the vibration [30, 31]. The amplitude of the vibrator button was set as low as possible at the start of the testing and steadily increased until the subject perceived the vibration. The voltage the biothesiometer displayed at the instant of the vibration was recorded. The process was repeated thrice on the pulp of each of the big toes and the mean value taken as the VPT for each of the lower limbs [30, 31]. Diabetic peripheral neuropathy was defined by a mean vibration perception threshold of > 25 Volts measured with the biothesiometer [30, 31].

A 10g Semmes Weinstein monofilament test was done to assess the perception of touch and to determine if there was loss of protective sensation (LOPS), which also indicated the presence of diabetic peripheral neuropathy [32].

Vibration sensation (pallesthesia) (sensory nerve function) was assessed using a 128 Hz tuning fork and the deep tendon (knee and ankle) reflexes were assessed using a tendon hammer. Absence of vibration perception and reduced or absent knee and ankle reflexes in diabetic subjects, especially the ankle reflexes clinically indicate the presence of diabetic peripheral neuropathy [33].

Diabetic Neuropathy Symptoms (DNS) score is a simple, self-reported questionnaire used for screening for diabetic peripheral neuropathy (DPN). It assesses four (4) symptoms: unsteadiness, pain, pricking sensations (paresthesia) and numbness over the past two (2) weeks. It has a maximum of 4 points: each symptom is scored 1 point when present and 0 point when absent. DNS score of 1 or higher indicates the presence of DPN in a diabetic patient [19].

The Nottingham Assessment of Functional Footcare (NAFF) questionnaire was designed to measure foot self-care behavior for persons living with diabetes and patients with diabetes mellitus foot syndrome. The NAFF is a quantitative, 29 item self-reported scale. The questionnaire has internal consistency of 0.53, and good test-retest reliability. The researcher asks patients to indicate their responses to items in a Likert scale. The frequency of behavior occurrence is from 0 to 3. A score of above 50 suggests satisfactory or good foot care practices, while a score of 50 or below generally indicates suboptimal foot care habits and the need for further evaluation [20-34].

Semmes Weinstein 10 g monofilament (SWM) is a low cost, bed side screening tool for detecting loss of protective sensation (LOPS) in diabetic patients with DPN. Semmes Weinstein 10 g monofilament evaluation (SWME) is done with the patient lying supine on a couch, the monofilament is applied perpendicularly first to a site other than the foot for the patients to get accustomed to how the SWM feels on touching their skin. Then, the patients are instructed to close their eyes and say "yes" when they feel the touch at their feet. The monofilament is held until it buckles, indicating that the correct force (10 g) was applied and if the patient could not feel the monofilament at one or more sites, it suggested LOPS, a risk factor for foot ulceration and amputation. The SWME is performed at 10 sites on each foot: the plantar surfaces of the first, third and fifth digits; the plantar surfaces of the first, third and fifth metatarsal heads; the plantar surface of the heel, the dorsal medial side of the mid-foot; and the dorsal surface of the foot between the base of the first and second toes [32, 35].

Weight and height were measured using Stadiometer (RGZ-120), waist circumference, measured with a measuring tape and blood pressure measured using Accoson mercury Sphygmomanometer in accordance with the WHO STEPS instruments [29].

Definition of Terms and Criteria

Hypertension was defined as systolic BP \geq 140 mmHg and or diastolic BP \geq 90 mmHg, measured on at least 2 separate occasions or if a patient is already on anti-hypertensive medications [36].

Diabetes mellitus was defined by fasting plasma glucose of ≥ 7.0 mmol/l (126 mg/dl) measured on at least 2 separate occasions [37]. Type 1 DM was defined as subjects with DM who are dependent on insulin for survival and are at risk for ketoacidosis [37].

Type 2 DM was defined as patients with DM on diet therapy either alone or in combination with oral glucose lowering agent(s) for glycaemic control [37].

Dyslipidaemia was taken as HDL-C <1.04 mmol/L(males) or < 1.3 mmol/L (females) or TG \geq 1.7 mmol/L or LDL-C \geq 2.6 mmol/L or total cholesterol (TC) \geq 5.2 mmol/L or if the patient is on lipid lowering agents [38].

Young age was taken as 18-44 years, middle age as 45-64 years and old age as 65 years and above [39]. Poor glycaemic control was taken as $HbA_{1C} \ge 7.0\%$ [37].

Global obesity was defined by body mass index (BMI) >30 (kg/M²) [37]. Central obesity was defined by waist to hip ratio (WHR) > 0.9 [37].

Diabetic peripheral neuropathy (DPN) was defined by a vibration perception threshold (VPT) > 25 Volts measured with the biothesiometer [30].

Peripheral artery disease (PAD) was defined by an ankle brachial pressure index (ABPI) value of \leq 0.9, while > 1.4 defined non compressibility of the arteries (calcification of the arteries) [27, 28].

Foot Deformities:

Prominent metatarsal head was defined as any inspected or palpable plantar prominences of the metatarsal heads of the foot [40].

Hammer toes was defined as extension at the MTP joint, Flexion at the proximal interphalangeal (PIP) joint and hyperextension at the distal interphalangeal (DIP) joint [41].

Claw toe was defined as hyperextension of the MTP joint with flexion at the PIP joint and DIP joint [41]. Charcot foot was defined as non-infectious destruction of bone and joint including loss of foot arches (Rocker bottom deformity) [42].

Pes cavus was defined as an abnormally high medial longitudinal arch, which extended between the first metatarsal head and the calcaneus [43].

Limited joint mobility was defined as stiffness or restriction of the range of motion at the joint which was assessed by evaluating the range of motion of the ankle joints, subtalar joints, metatarsal joints, and interphalangeal joints through their normal ranges of motion, and determining whether there was any pain or restriction of the range of motion [44].

Bunionette was defined as adduction deformity of the fifth metatarsal joint, causing the 5th metatarsal to move outward, making it prominent [45].

Hallux valgus (bunion) was defined as an abduction deformity of the great (big) toe and an adduction deformity of the first metatarsal, with the big toe (hallux) deviating towards the second toe [46].

Hallux rigidus was defined by a limitation of movement: flexion and extension (stiffening) at the first metatarsophalangeal (MTP) joint, causing a stiff big toe [47, 48].

Hallux varus was defined as adduction deformity (medial deviation) of the great toe at the first MTP joint with medial deviation of the hallux in relation to the first MTP joint [49].

Mallet toe was defined as flexion deformity at the distal interphalangeal (DIP) joint of the toe where the tip of the toe bends downwards away from the rest of the toes [50].

Pes planus was defined as the absence of the arches of the foot making it flat. Acquired pes planus occurs most commonly due to posterior tibial tendon dysfunction [51].

Amputation was reported as any resection of any part of the limb. It was divided into groups: major

amputation (ankle disarticulation, transfemoral amputation, or transtibial amputation), and minor amputation (a toe or transmetatarsal amputation) [52].

Muscle atrophy was defined as the loss of the mass of the skeletal muscles at the foot [53].

Statistical Analysis

Data collected was entered into spreadsheet using Microsoft Office Excel, and then analysed using Statistical Package for Social Sciences (SPSS) version 25. Results of categorical variables were presented in tables as frequencies and percentages. The mean values and standard deviation for the continuous variables were calculated. Chi-square test or Fisher's exact test was used to determine the association between foot deformity and the categorical variables. The level of significance for all tests was set at $p < 0.05.\,$

RESULTS

A total of 98 subjects were evaluated in the study and they comprised 51% males and 49% females with a mean age of 59.61 ± 11.62 years. The majority of the subjects (40.8% and 88.8%) had tertiary education and had never smoked (details in Table 1).

Table 1: Socio-demographic characteristics of the subjects

Variable	Frequency (n)	Percentage (%)
Age (years)		
Young age	9	9.2
Middle age	53	54.1
Old age	36	36.7
Mean = 59.61 ± 11.62		
Sex		
Male	50	51.0
Female	48	49.0
Educational level		
No formal	3	3.1
Primary	36	36.7
Secondary	19	19.4
Tertiary	40	40.8
Ever smoked cigarette		_
Yes	11	11.2
No	87	88.8

2. Mean Values of Clinical Variables

The mean duration of diabetes was 11.11 ± 8.48 years and the mean HbA1c level, Ankle-Brachial Pressure Index (ABPI), Vibration Perception Threshold (VPT), Diabetic Neuropathy Symptom (DNS), and

Nottingham Assessment of Functional Footcare (NAFF) scores were 8.4 ± 2.34 %, 1.20 ± 0.30 , 29.11 ± 16.53 (Volts), 1.48 ± 1.29 and 44.56 ± 8.53 , respectively (details in table 2).

Table 2: Mean values of clinical variables

Variable	Minimum	Maximum	Mean	SD
Duration of DM (years)	0.50	38.00	11.11	8.48
HbA1c (%)	4.50	15.60	8.44	2.34
Mean ABPI	0.65	2.70	1.20	0.30
Mean VPT (Volts)	0.40	62.00	29.11	16.53

Variable	Minimum	Maximum	Mean	SD
DNS score	0	4.00	1.48	1.29
NAFF score	30.11	66.79	44.56	8.53

 $DM = Diabetes \ Mellitus; \ HbA1c = Glycated \ haemoglobin; \ ABPI = Ankle \ brachial \ pressure \ index; \ VPT = Vibration \ perception \ threshold; \ DNS = Diabetic \ neuropathy \ symptom; \ NAFF = Nottingham \ assessment \ of \ functional \ footcare$

3. Clinical Characteristics of the Subjects

The majority (67.3%) of the subjects had long durations of diabetes and the minority (21.4%) exercised regularly. Similarly, about 51.0% of the subjects had good long term glycaemic control, while 50.0% and 85.4% of the male and female subjects had obesity, respectively. Lastly, about half of the subjects had

diabetic peripheral neuropathy (DPN), determined by biothesiometry, while 19.4%, 49.0%, 43.9%, 28.6% and 74.5% of the subjects had peripheral artery disease (PAD), loss of protective sensation (LOPS), loss of vibration sense (determined using tuning fork), absent or reduced reflexes (ankle and knee) and poor foot care practices, respectively (details in table 3).

Table 3: Clinical characteristics of the subjects

Table 3: Clinical characteristics of the subjects				
Variable	Frequency (n)	Percentage (%)		
Duration of diabetes				
Short duration	32	32.7		
Long duration	66	67.3		
Exercise				
Yes	21	21.4		
No	77	78.6		
Global obesity				
Yes	35	35.7		
No	63	64.3		
Abdominal obesity (Males)				
Yes	25	50.0		
No	25	50.0		
Abdominal obesity (Females)				
Yes	41	85.4		
No	7	14.6		
Glycaemic control				
Good	48	51.0		
Poor	50	49.0		
PAD				
Absent	79	80.6		
Present	19	19.4		
PAD grading				
Mild	5	5.1		
Moderate	12	12.2		
Severe	2	2.0		
Neuropathy				
Absent	49	50.0		
Present	49	50.0		
LOPS				
Absent	50	51.0		
Present	48	49.0		
Vibration sense (using tuning fork)				
Absent	43	43.9		
Present	55	56.1		
Deep tendon reflexes				
Absent/Reduced	28	28.6		
Normal	70	71.4		
NAFF score	-			
Satisfactory foot care practices	25	25.5		
Suboptimal foot care practices	73	74.5		
Suboptimal foot care practices	13	/ T.J		

 $PAD = Peripheral \ artery \ disease; \ LOPS = Loss \ of \ protective \ sensation; \ NAFF = NAFF = Nottingham \ assessment \ of \ functional \ footcare$

4. Prevalence of Foot Deformities in the Subjects

A total of 62.2% of the subjects had foot deformity, of which 30.6%, 4.1%, 13.3%, 8.2%, 7.1% and 4.1% had prominent metatarsal head, pes cavus, pes planus, claw toe, hammer toe, and mallet toe, respectively, while 11.2%, 4.1%, 9.2%, 4.1%, 2.0%,

43.95, 3.1%, 1.0% and 28.6% of the subjects had hallus rigidus, hallus varus, hallus valgus (bunion), bunionette, Charcot foot, muscle wasting (atrophy), disarticulation, amputation and limited joint mobility, respectively (details in table 4).

Table 4: Prevalence of foot deformities in the subjects

Table 4: Prevalence of foot deformities in the subjects					
Variable	Frequency (n)	Percentage (%)			
Prominent metatarsal head	60	CO 4			
Absent	68	69.4			
Present	30	30.6			
Pes cavus	0.4	0.5.0			
Absent	94	95.9			
Present	4	4.1			
Pes planus	0.7	0.1-			
Absent	85	86.7			
Present	13	13.3			
Claw toe					
Absent	90	91.8			
Present	8	8.2			
Hammer toe					
Absent	91	92.9			
Present	7	7.1			
Mallet toe					
Absent	94	95.9			
Present	4	4.1			
Hallus rigidus					
Absent	87	88.8			
Present	11	11.2			
Hallus varus					
Absent	94	95.9			
Present	4	4.1			
Hallus valgus (bunion)					
Absent	89	90.8			
Present	9	9.2			
Bunionette					
Absent	94	95.9			
Present	4	4.1			
Charcot foot					
Absent	96	98.0			
Present	2	2.0			
Muscle atrophy					
Absent	55	56.1			
Present	43	43.9			
Amputation (minor)					
Absent	95	96.9			
Present	3	3.1			
Amputation (major)					
Absent	97	99.0			
Present	1	1.0			
Joint mobility					
Limited	28	28.6			
Unlimited	70	71.4			
Foot deformity					
Absent	37	37.8			
Present	61	62.2			

5. Association between Foot Deformity and Socio-Demographic Variables

Foot deformity showed significant association with the age of the subjects, educational level and duration of diabetes. Foot deformity was more in the elderly and middle-aged, compared to the young subjects. Equally, foot deformity was more in subjects with no formal education and in subjects with primary education compared to those with secondary and tertiary

education. Lastly, subjects who has a long duration of diabetes had higher prevalence of foot deformity compared to those with short duration of diabetes.

Foot deformity showed no significant association with gender, smoking, exercise, the site of work, foot care knowledge, foot care practices and DNS score (details in table 5).

Table 5: Association between foot deformity and socio-demographic variables

Variable	Foot deformity n (%)		\mathbf{X}^2	p-value
	Absent	Present		
Age				
Young age	5 (55.6)	4 (44.4)	8.349	0.015*
Middle age	25 (47.2)	28 (52.8)		
Old age	7 (19.4)	29 (80.6)		
Sex				
Male	20 (40.0)	30 (60.0)	0.219	0.640
Female	17 (35.4)	31 (64.6)		
Level of education				
No formal	2 (66.7)	1 (33.3)	8.318	0.040*
Primary	9 (25.0)	27 (75.0)		
Secondary	5 (26.3)	14 (73.7)		
Tertiary	21 (52.5)	19 (47.5)		
Ever smoked cigarette	, ,			
Yes	3 (27.3)	8 (72.7)	0.579	0.447
No	34 (39.1)	53 (60.9)		
Exercise				
Yes	10 (47.6)	11 (52.4)	1.107	0.293
No	27 (35.1)	50 (64.9)		
DM duration				
Short	17 (53.1)	15 (46.9)	4.776	0.029*
Long	20 (30.3)	46 (69.7)		
Site of work				
Indoor	25 (40.3)	37 (59.7)	0.473	0.491
Outdoor	12 (33.3)	24 (66.7)		
Foot care knowledge		` ′		
Yes	28 (35.9)	50 (64.1)	0.561	0.454
No	9 (45.0)	11 (55.0)		
DNS score		<u> </u>		
0	14 (51.9)	13 (48.1)	4.560	0.336
1	12 (40.0)	18 (60.0)		
2	5 (29.4)	12 (70.6)		
3	4 (26.7)	11 (73.3)		
4	2 (22.2)	7 (77.8)		
NAFF score	` ′	<u> </u>		
Satisfactory foot care practices	9 (36.0)	16 (64.0)	0.044	0.834
Suboptimal foot care habits	28 (38.4)	45 (61.6)		

 $DM = Diabetes \ mellitus; \ DNS = Diabetes \ neuropathy \ symptom; \ NAFF = Nottingham \ assessment \ of functional footcare$

6. Association between Foot Deformity and Clinical/Laboratory Variables

Foot deformity had significant association with glycaemic control, global obesity, presence of neuropathy: increased vibration perception threshold, loss of protective sensation, loss of vibration sensation and absent/reduced deep tendon reflexes. Subjects with poor glycaemic control, global obesity, neuropathy, loss

of protective sensations, loss of vibration sensation, as well as subjects with absent or reduced deep tendon reflexes had higher prevalence of foot deformity compared to those with converse conditions. There was no significant association between foot deformity and dyslipidaemia, blood pressure, peripheral artery disease, anti-diabetic- and lipid-lowering drugs use (details in table 6).

Table 6: Association between foot deformity and clinical/laboratory variables

Variable	Foot defor	\mathbf{X}^2	y variable p-value	
	Absent	Present		
Glycaemic control	11000110	11000110		
Good	24 (50.0)	24 (50.0)	6.002	0.014*
Poor	13 (26.0)	37 (74.0)	0.002	0.01
Dyslipidaemia	10 (20.0)	<i>57 (7.116)</i>		
Present	35 (40.2)	52 (59.8)	2.020	0.155
Absent	2 (18.2)	9 (81.8)	2.020	0.155
Treatment for diabetes	2 (10.2)	> (01.0)		
OADs	30 (41.7)	42 (58.3)	1.774	0.412
Insulin	1 (25.0)	3 (75.0)		
Both	6 (27.3)	16 (72.7)		
Abdominal obesity	(=:::)	(,-,,		
Yes	27 (40.9)	39 (59.1)	0.856	0.355
No	10 (31.3)	22 (68.8)	0.000	0.000
Global obesity	10 (01.0)	(50.0)		
Yes	20 (57.1)	15 (42.9)	8.708	0.003*
No	17 (27.0)	46 (73.0)	0.700	0.000
SBP control	()	12 (72.0)		
Good	30 (43.5)	39 (56.5)	3.250	0.071
Poor	7 (24.1)	22 (75.9)	0.200	0.071
DBP control	, (= 1.12)	(/**//		
Good	29 (39.2)	45 (60.8)	0.264	0.607
Poor	8 (33.3)	16 (66.7)	0.20	0.007
Anti-hypertensive drug(s) use	(= /	(2.2.1.)		
Yes	20 (37.7)	33 (62.3)	0.000	0.997
No	17 (37.8)	28 (62.2)		
Lipid-lowering drug(s) use		Ì		
Yes	23 (39.7)	35 (60.3)	0.218	0.640
No	14 (35.0)	26 (65.0)		
PAD		Ì		
Present	6 (31.6)	13 (68.4)	0.383	0.536
Absent	31 (39.2)	48 (60.8)		
Vascular calcification				
Present	11 (29.7)	26 (70.3)	1.629	0.202
Absent	26 (42.6)	35 (57.4)		
Neuropathy (Increased VPT)				
Present	8 (16.3)	41 (83.7)	19.148	0.000*
Absent	29 (59.2)	20 (40.8)		
LOPS				
Present	7 (14.6)	41 (85.4)	21.495	0.000*
Absent	30 (60.0)	20 (40.0)		
Vibration sense				
Present	30 (54.5)	25 (45.5)	15.037	0.000*
Absent	7 (16.3)	36 (83.7)		
Deep tendon reflexes				
Present	33 (47.1)	37 (52.9)	9.188	0.002*
Absent	4 (14.3)	24 (85.7)		

 $OAD = Anti\ diabetic\ drug(s);\ SPB = Systolic\ blood\ pressure;\ DBP = Diastolic\ blood\ pressure;\ PAD = Peripheral\ artery\ disease;\ LOPS = Loss\ of\ protective\ sensation$

DISCUSSION

A total of 98 T2DM subjects had complete data and were analysed in this study. The mean age of the subjects was 59.61 ± 11.62 years and the majority of the participants (51%) were male while 49% were female subjects. Similarly, the majority (40.8% & 88.8%) of the

subjects had tertiary education and had never smoked, respectively. Also, the majority of subjects had poor glycaemic control, the mean HbA1c was $8.44 \pm 2.34\%$.

Cigarette smoking is a risk factor both macro and microvascular complications of diabetes mellitus [54]. Equally, poor glycaemic control is a significant risk

factor for the development and progression of diabetesrelated complications [55, 56].

The overall prevalence rate of foot deformity among the subjects was 62.2%. This high prevalence could be largely explained by the facts that up to 67.3% and 78.6% of the subjects studied had long duration of DM and never had regular exercise and both were risk factors for developing foot deformity in diabetic subjects [8,58]. Similarly, the high mean HbA1c, VPT and DNS scores (8.44 \pm 2.34%, 29,11 \pm 16.53 Volts & 1.48 \pm 1.29, respectively), that reflected a poor long term glycaemic control, and the presence of diabetic peripheral neuropathy (DPN), respectively could also explain the high prevalence rate of foot deformity in the subjects. Poor glycaemic control and DPN were found to be risk factors for the development of foot deformities in DM subjects [8,56].

Finally, 50% and 85.4% of the male and female subjects had abdominal (central) obesity, respectively while 38.7%, 19.4% and 78.5% of the subjects had global obesity, PAD and suboptimal foot care practices and all were shown to be associated with the development of foot deformity in previous studies [59-61]. Adebabay et al., found that the overall prevalence of foot deformity in diabetic patients in Ethiopia was 33.4% and this contrastingly, is lower than that found by this study. Unlike the index study, they evaluated larger population of diabetic subjects, but a lesser spectrum of specific foot deformities [8]. Walters et al., equally, found that the prevalence rate of foot deformity in their diabetic cohort in East Dorset, UK was 44.5% [62]. Their study was done over three decades ago and their sample size was 1077 DM subjects. Apparently, the prevalence rate of diabetic foot deformity varied based on the spectrum of specific foot deformities that was evaluated and the peculiarities of the population studied, including the sample size.

Prevalence of the Different Foot Deformities in the Subjects

The most prevalent foot abnormality found by this study was muscle atrophy (43.9%), followed by prominent metatarsal head (30.6%), pes planus (13.3%), hallux rigidus (11.2%), hallux valgus (9.2%), claw toe (8.2%), hammer toe (7.1%), pes carvus (4.1%), mallet toe (4.1%), hallux varus (4.1%), bunionette (4.1%), minor amputation (3.1%), Charcot foot (2.0%), and major amputation (1.0%), respectively. The index study additionally found that the prevalence rate of DPN and PAD was 50% and 19.4%, respectively. The high prevalence rate of peripheral neuropathy and peripheral artery disease among the subjects could account for the high prevalence rate of DM foot deformities found by this study. Mekonnem et al., found the prevalence rates of 7%, 8.5%, 9%, 12% and 44.9% for pes cavus, hallux valgus, calluses, claw/hammer toe and foot ulcer, respectively in their diabetic subjects [63]. Comparable to this study, Mekonnem et al., also found a prevalence

rate of PAD of 18.4%, but a lower prevalence rate of DPN (20.4%) among their DM subjects [63]. Additionally, the index study found that 25.5% of the subjects practiced optimal foot care practices and this is higher than the 15.8% recorded by Mekonnem *et al.*, [63].

Lastly, Ababneh *et al.*, in Jordan found that the commonest foot abnormality in their diabetic subjects was hallux valgus (17.4%) [65]. The prevalence rates of most the other foot abnormalities they found were comparable to those of the index study: Charcot foot deformity (2.1%), pes cavus (3.2%), limited joint mobility (9.2%), claw /hammer toe (16.0%), prominent metatarsal head (14.2%) and amputation (1.7%) versus 9.2%, 2.0%, 4.1%, 28.6%, 8.2%, 7.1%, 30.6% and 4.1% for hallux valgus, Charcot foot, pes cavus, limited joint mobility, claw toe, hammer toe, prominent metatarsal head and amputation found by the et and the index study, respectively [17].

Association between foot Deformity and Socio-Demographic Risk Factors

This study found significant association between diabetic foot deformity and the age of the subjects: elderly subjects had more foot deformity compared with young and middle-aged subjects. Ababneh et al., equally found that elderly subjects were more prone to developing diabetic foot deformity [17]. The prevalence of neuropathy, foot deformity and PAD, as well as the risk of amputation were found to increase with increasing age [64]. This study also found significant association between foot deformity and the duration of DM and the educational status of the subjects. Foot deformity was more prevalent among the subjects who had no formal education and those with primary education, compared to those that attained higher levels of education. Equally, subjects with longer duration of DM had higher prevalence of foot deformity and similar findings were reported by some other studies [8-63]. Education generally, and foot care education specifically reduces the risk of foot deformity in DM subjects [65]. Compared to this study, some other researchers disparately found significant association between foot deformity in diabetic subjects and gender. Hallux valgus and diabetic foot ulcer (DFU) were more prevalent in female subjects compared to their male counterparts [13-17].

The index study did not find significant association between foot deformity and smoking and exercise. This may likely be due to the fact that the percentage of the subjects that smoked cigarette or had regular exercise was very small. Differently, some other studies found significant association between foot deformity in DM subjects and cigarette smoking, exercise, site of work, DNS score and foot care practice [2-58].

Association between Foot Deformity and Clinical/Laboratory variables in the Subjects

This study found that foot deformity had significant association with glycaemic control, global obesity, DPN: diagnosed with biothesiometer (VPN), tuning fork and tendon hammer (reflexes). Poor glycaemic control, global obesity, and DPN were reported as risk factors for the development of foot deformity in diabetic subjects. Similar findings were equally made by some other scholars [8,56].

Contrastingly, Halawa *et al.*, did not find significant association between plantar pressure, which is a marker of LOPS and by extension, DPN and the age of their diabetic subjects, duration of DM, global obesity and glycaemic control [66].

Lastly, this study did not find significant association between foot deformity and blood pressure, dyslipidaemia, PAD, treatment for DM, antihypertensive medication(s) use, and lipid-lowering medication(s) use. Agreeable to the index study, Halawa *et al.*, did not find significant association between foot deformity in DM subjects and glycaemic control. Contrastingly, they did not find significant association between foot deformity and the age of the subjects, duration of DM and global obesity [66]. Finally, unlike this study, Luo *et al.*, found that diabetic subjects with hallux valgus deformity had significantly less smoking habit, but that they paradoxically had good glycaemic control (lower HbA1c) [67].

Strengths and Limitations

This study evaluated a broader spectrum of DM-associated foot deformities and the risk factors for them compared to most other published literatures on this very important topic done in sub-Saharan Africa.

Notably also, this study was done in a specialist diabetes clinic in a tertiary health facility and the finding may not reflect the true prevalence of foot deformity in type 2 DM subjects in the rural communities or the primary health care setting.

CONCLUSION

The prevalence rate of foot deformity in subjects with type 2 DM recorded in this study was very high and was significantly associated with risk factors that included increasing age, longer duration of DM, lower educational status, poor glycaemic control, global obesity, and the presence of neuropathy in the subjects. Most of these risk factors for DM-associated foot deformity are potentially reversible if detected and corrected very early in the course of treatment of diabetes. This would go a long way to reducing the occurrence and retarding the progression of foot deformity in subjects with type 2 diabetes. Concerted efforts should be made by both the governmental agencies and health care physicians in giving diabetes education, especially foot care education to diabetic

patients. A multi-disciplinary approach to the management of DM and DM foot deformity must be generally adopted by our hospitals, especially the specialist hospitals and the attending physicians should endeavor to screen the foot of their DM patients regularly and offer timely treatment to the subjects found to have foot deformity.

Acknowledgement: The authors acknowledge all the subjects that participated in the study.

Author's Contributions: CME – conception, design of the research and manuscript writing; AME – design, literature search/review, editing of manuscript; HEI – critical review of manuscript; HCN – manuscript writing, editing and critical review. The authors read and approved the final manuscripts.

Funding: No funding was received by the authors.

Conflict of Interest: None declared.

Ethical Approval: Ethical approval was obtained from the ethics committee of Nnamdi Azikiwe University Teaching Hospital, Nnewi with identification number: NAUTH/CS/66/VOL.13/VER 3/92/2020/067.

REFERENCES

- Dawe EJ, Davis J. Anatomy and biomechanics of the foot and ankle. Orthop Trauma. 2011; 25 (4): 279 86. http://dx.doi.org/10.1016/j.mporth.2011.02.004
- Panday RA, Deepak P. Assessment of foot deformities in patients with type 2 diabetes mellitus. Int J res Orthop. 2023; 9 (3): 559 564. http://dx.doi.org/10.18203/issn.2455-4510.IntJResOrthop20231183
- Morbach S, LobmannR, Eckhard M, Müller E, Reike H, Risse A et al. German Diabetes Association Clinical Practice Guidelines. Diabetologie. 2020; 15 (Suppl 1): s206 s215. http://dx.doi.org/10.1055/a-1194-1790
- 4. Gray H, Arcturus Publishing; 2009: Gray's anatomy: with original illustrations by Henry Carter
- 5. Ficke J, Byerly DWStatpearls Publishing; Treasure Island (FL): Aug 7, 2023. Anatomy, Bony Pelvis and Lower Limb: Foot
- 6. Brockett CL, Chapman GJ. Biomechanics of the ankle. Orthop Trauma. 2016; 30 (3): 232 238. http://dx.doi.org/10.1016/j.mporth.2016.04.015.
- Tuttolomondo A, Maida C, Pinto A. Diabetic foot syndrome: Immune-inflammatory features as possible cardiovascular markers in diabetes. World J Orthop. 2015; 6 (1): 62 – 76. http://dx.doi.org/10.5312/wjo.v6.i1.62
- 8. Adebabay AA, Worede AM, Sume BW, Mihiret GT, Shimelash RA, Goshu BT. Prevalence and associated factors of foot deformity among adult diabetic patients on follow-up at Debre Markos comprehensive specialized hospital, North-west

- Ethiopia, 2022, cross-sectional study. BMC EndocrDisord. 2023; 23: 265. http://dx.doi.org/10.1186/s12902-023-01519-8
- McDermott K, Fang M, Boulton AJM, Selvin E, Hicks CW. Etiology, Epidemiology, and Disparities in the Burden of Diabetic Foot Ulcers. Diabetes Care. 2023; 46 (1): 209 – 221. http://dx.doi.org/10.2337/dci22-0043.
- Fabrin J, Larsen K, Holstein PE. Long-term follow-up in diabetic Charcot feet with spontaneous onse.
 Diabetes Care. 2000; 23 (6): 796 800. http://dx.doi.org/10.2337/diacare.23.6.796.
- Schoots IG, Slim FJ, Busch-Wesbroek TE, Maas M. Neuro-osteoarthropathy of the foot-dadiologist: friend or foe? Semin Musculoskeletal Radiol. 2010; 14: 365 76.http://dx.doi.org/10.1055/s-0030-1254525.
- Ogbera AO, Adedokun A, Fasanmade OA, Ohwovoriole AE, Ajani M. The Foot at Risk in Nigerians With Diabetes Mellitus – The Nigerian Scenario. Int J Endocrinol Metab. 2005; 4: 165 – 173.
- 13. Odusan O, Amoran OE, Salami O. Prevalence and pattern of Diabetic Foot Ulcers among adults with Diabetes mellitus in a secondary health care facility in Lagos, Nigeria. Annals of Health Research. 2017; 3 (2): 98 104.
- 14. Salawu AI, Ajani GO, Soje MO, Ojo OD, Olabinri EO, Obajolowo OO et al. Diabetes mellitus foot ulcer and associated factors among Type 2 diabetes patients in a Tertiary Institution in Southwestern Nigeria. Ann Afr Med. 2022; 21 (4): 339 347. http://dx.doi.org/10.4103/aam.aam_57_21
- Aliyu R, Gezewa ID, Uloko AE, Ramalan MA. Prevalence and risk factors of diabetes foot ulcers in Kano, north western Nigeria. Clin Diabetes Endoccrinol. 2023; 9: 6. http://dx.doi.org/10.1186/s40842-023-00155-4
- Ugwu E, Adeleye O, Gezawa I, Okpe I, Emanino M, Ezeani I. Burden of diabetic foot ulcer in Nigeria: Current evidence from the multicenter evaluation of diabetic foot ulcer in Nigeria. World J Diabetes, 2019; 10 (3): 200 211. http://dx.doi.org/10.4329/wjd,v10.i3.200
- Ababneh A, Bakri FG, Khader Y, Lazzarini P, Ajlouni K. Prevalence and Associates of FootDeformities among Patiuents with Diabetes in Jordan. Curr Diabetes Rev. 20220; 16 (5): 471 – 482. http://dx.doi.org/10.2174/15733998156661910011 01910
- Edmonds M, Manu C, Vas P. The current burden of diabetic foot disease. J Clin Orthop Trauma. 2021;
 17; 88 93. http://dx.doi.org/10.1016/j.jcot.2021.01.017.
- Meijer JW, Smit AJ, Sonderen EV, Groothoff JW, Eisma WN, Links TP. Symptom scoring systems to diagnose distal polyneuropathy in diabetes: The Diabetic Neuropathy Symptom score. Diabetic Medicine. 2002; 19 (11): 962 – 965.

- http://dx.doi.org/10.1046/j.1464-5491.2002.00819.x
- Lincoln NB, Jeffcoate WJ, Ince P, Smith M, Radford K. Validation of a new measure of protective footcare behavior: The Nottingham Assessment of Functional Footcare (NAFF). Practical Diabetes International. 2009; 24 (4): 207 – 211. http://dx.doi.org/10.1002/pdi.1099.
- 21. Mark V. An improved glucose oxidase method for determining blood, csf, urine glucose levels. Clin Chim Acta. 1996; 251: 19-24.
- 22. Fluckiger R, Woodtli T, Berger W. Quantitation of glycosylated haemoglobin by boronate affinity chromatography. Diabetes. 1984; 33: 73-76.
- 23. Hirano T, Nohtomi K, Koba S, Muroi A, Ito Y. A simple and precise method for measuring HDL-cholesterol subfractions by a single precipitation followed by homogenous HDL-cholesterol assay. J lipid Res. 2008; 49: 1130-1136.
- Allain CC, Poon LS, Chan CSG, Richmond W, Fu
 Enzymatic determination of total serum cholesterol. Clin Chem. 1974; 20: 470-475.
- 25. Bucolo G, David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem. 1973; 19: 476-482.
- Assmann G, Jabs HU, Kohnert U, Nolte W, Schriewer H. LDL-cholesterol determination in blood serum following precipitation of LDL with polyvinylsulphate. Clin Chim Acta. 1984; 140: 77-83.
- 27. Rooke TW, Hirsch AT, Misra S, Sidawy AN, Findeiss K, Golzarian J et al. 2011 ACCF/AHA focused update of the guideline for the management of of patients with peripheral artery disease (updating the 2005 guideline. A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2011; 24: 2020 2045.
- 28. Ezeude CM, Ijoma UN, Oguejiofor OC, Young EE, Nwatu CB, Onyenekwe BM et al. Asymtomatic Cardiovascular Disorders in a Cohort of Clinically Stable Type 2 Diabetes Mellitus Patients in South Eastern Nigeria: A Cross Sectional Study. JAMMAR. 2020; 32 (14); 58 66.
- 29. WHO STEPS Instruments. http://www.who.int/chp/steps.
- Gowdhaman N, Gopal KM, Meganathan M, Balamurugan K, Mohan J, Vijayalakshmi D. A study on vibration perception threshold measurements in Diabetic patients by using Biothesiometer. World Journal of Pharmacy and Pharmaceutical Sciences. 2015; 4(7); 1296 – 1302.
- 31. Oguejiofor OC, Onwukwe CH, Ezeude CM, Okonkwo EK, Nwaloxie JC, Odenigbo CU et al. Objective Peripheral Neuropathy and its Predictors in Type 2 Diabetic Subjects with Symptoms of Peripheral neuropathy in Nnewi, South-Eastern Nigeria. International Journal of Research Studies in Medical and Health Sciences. 2017; 2 (12): 12 16.

- 32. Dube S, Hulke SM, Wakode SL, Khadanga S, Thakare AE, Bharshankar RN et al. Effectiveness of Semmes Weinstein 10 gm monofilament in diabetic peripheral neuropathy taking nerve conduction and autonomic function study as reference tests. J Family Med prim Care. 2022; 11 (10): 6204 6208. http://dx.doi.org/10.4103/jfmpc.jfmpc_195_22.
- Li ZF, Niu XL, Nie LL, Chen LP, Cao CF, Guo L. Diagnostic value of clinical deep tendon reflexes in diabetic peripheral neuropathy. Arch Med Sci. 2020;
 19 (5): 1201 1206. http://dx.doi.org/10.5114/aoms.2020.100656.
- 34. Elkashif MML, Mahdy AY, Elgazzar SE. Evaluating the Effect of Establishing Ptotocol for Self-care Practice of Diabetic Foot Patients Regarding Their Needs, Concerns and Medication Use: A quasi-experimental study. Saudi J Biol Sci. 2021; 28 (6): 3343 3350. http://dx.doi.org/10.1016/j.sjbs.2021.02.081.
- 35. Zhang Q, Yi N, Liu S, Zheng H, Qiao X, Xiong Q. Easier operation and similar power of 10g monofilament test for screening diabetic peripheral neuropathy. J Int Med Res. 2018; 46 (8): 3278 3284. http://dx.doi.org/10.1177/0300060518775244.
- Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertens. 2003; 42: 1206 1252.
- 37. World Health Organization. (1999) Definition, diagnosis and classification of diabetes mellitus and its complications. WHO/NCD/NCS 99. Geneva. WHO; pp 1-58.
- 38. National Cholesterol Education Program. Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (ATP 111 Final Report). Circulation. 2022; 106: 3141 3421.
- 39. U.S. Census Bureau, 2012 Population Estimates and 2012 National Projections. https://www.Census.gov
- Boulton AJ. Pressure and the diabetic foot: clinical science and offloading techniques. Am J Surg 2004; 187(5A): 17S-24S. http://dx.doi.org/10.1016/S0002-9610(03)00297-6
- 41. Myerson MS, Shereff MJ. The pathological anatomy of claw and hammer toes. J Bone Joint Surg Am. 1989; 71 (1): 45 9
- 42. Sella EJ, Barrette C. Staging of Charcot neuroarthropathy along the medial column of the foot in the diabetic patient. J Foot Ankle Surg 1999; 38(1): 34-40. http://dx.doi.org/10.1016/S1067-2516(99)80086-6
- 43. Ledoux WR, Shofer JB, Ahroni JH, Smith DG, Sangeorzan BJ, Boyko EJ. Biomechanical differences among pes cavus, neutrally aligned, and pes planus feet in subjects with diabetes. Foot Ankle Int 2003; 24(11): 845-50. http://dx.doi.org/10.1177/107110070302401107

- 44. Campbell RR, Hawkins SJ, Maddison PJ, Reckless JP. Limited joint mobility in diabetes mellitus. Ann Rheum Dis 1985; 44(2): 93-7. http://dx.doi.org/10.1136/ard.44.2.93
- 45. Smith DG, Barnes BC, Sands AK, Boyko EJ, Ahroni JH. Prevalence of radiographic foot abnormalities in patients with diabetes. Foot Ankle Int. 1997; 18 (6): 342 6. http://dx.doi.org/10.1177/10711007901800606
- 46. Nix S, Smith M, Vicenzino B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. J Foot Ankle Res 2010; 3(1): 21. http://dx.doi.org/10.1186/1757-1146-3-21
- 47. Gilheany MF, Landorf KB, Robinson P. Hallux valgus and hallux rigidus a comparison of impact on health-related quality of life in patients presenting to foot surgeons in Australia. J. Foot Ankle Res. 2008; 1: 14. http://dx.doi.org/10.1186/1757-1146-1-14
- 48. Cöster MC, Cöster ME, Montgomery F. Hallux rigidus Osteoarthritis of the first MTP-joint. Surgical and patient-reported results from Swefoot. Foot and Ankle Surg. 2021; 27 (5): 555 558. http://dx.doi.org/10.1016/j.fas.2020.07.008
- 49. Donley BG. Acquired hallux varus. Foot Ankle Int. 1997; 18 (9): 586 92. http://dx.doi.org/10.1177/107110079701800911
- 50. Bates B. A guide to physical examination and history taking. 5th ed. Philadelphia, PA: JB Lippincott; 1991.
- 51. Kohls-GatzoulisJ, Woods B, Angel JC, Singh D. The prevalence of symptomatic posterior tibialis tendon dysfunction in women over the age of 40 in England. Foot Ankle Surg. 2009; 15 (2): 75 81. http://dx.doi.org/10.1016/j.fas.2008.08.003.
- 52. Primadhi RA, Septrina R, Hapsari P, Kusumawati M. Amputation in diabetic foot ulcer: A treatment dilemma. World J Orthop. 2023; 14 (5): 312 318. http://dx.doi.org/10.5312/wjo.v14.i5.312.
- 53. Perry BD, Caldow MK, Brennan-Speranza TC, Sbaragha M, Jerums G, Garnham A. Muscle atrophy in patients with Type 2 Diabetes mellitus: roles of inflammatory pathway, physical activity and exercise. Exerc Immunol Rev. 2016; 22: 94 – 106.
- 54. Eliasson B, Cigarette smoking and diabetes. Progress in Cardiovascular Disease. 2003; 45 (5): 405 413. http://dx.doi.org/10.1053/pcad.2003.00103
- 55. Khattab M, Khader YS, Al-Khawaldeh A, Ajlouni K, Factors associated with poor glycaemic control among patients with type 2 Diabetes. J. Diabetes Complicat. 2010; 24 (2): 84 9.
- 56. Dinavari MF, Sanaie S, Rasouli K, Faramarzi E, Moldani-Gol R. Glycaemic control and associated factors among type 2 diabetes mellitus patients: a cross-sectional study of Azar cohort population. BMC. EndocrDisord. 2023; 23: 273. http://dx.doi.org/10.1186/s12902-023-01515-y
- 57. Francia P, Gulisano M, Anichini R, SeghieriG.Diabetic foot and exercise therapy: step by step the role of rigid posture and biomechanics

- treatment. Curr Diabetes Rev. 2014; 10 (2): 86 99. http://dx.doi.org/10.2174/15733998106661405071 12536
- 58. Matos M, Mendes R, Silva AB, Sousa N. Physical activity and exercise on diabetic foot related outcomes: A systematic review. Diabetes Res Clin Pract. 2018; 139: 81 90. http://dx.doi.org/10.1016/j.diabre.2018.02.020
- 59. Dufour AB, Losina E, Menz HB, LaValley MP, Hannan MT. Obesity, foot pain and foot pain and foot disorders in older men and women. Obesity Research & Clinical Practice. 2017: 11 (4): 445 453. http://dx.doi.org/10.1016/j.orcp.201611.001
- 60. Ahmed JER, Veto J, Santos D. The effects of weight reduction on the diabetes foot: A scoping review and clinical implications. Obes Pillars. 2024; 13: 100152.
 - http://dx.doi.org/10.1016/j.obpill.2024.100152
- Paramasivan S, Ramahingam G, Gani ARP. Foot self-care practices among diabetic patients attending a teaching hospital in Tamil Nadu, India. J Family Med Prim Care. 2023; 12 (9): 2036 2041.http://dx.doi.org/10.4103/jFMPC.Jfmpc 409 23
- 62. Walter DP, Gatling W, Hill RD, Mullee MA. The prevalence of foot deformity in diabetic subjects: a

- population study in an English community. Practical Diabetes. 1993; 10 (3): 106 108. http://dx.doi.org/10.10027/pdi.1960100311
- 63. Mekonnem BE, Wirtu AT, Kabede MA, Tilahun AG, Degega TK. Diabetic-Related foot Deormity: Prevalence, Risk Factors, Knowledge and Practice. Trends Anat Physical. 2021; 4: 010. http://dx.doi.org/10.24966/TAP-7752/100010
- 64. Pataky Z, Vischer U. Diabetic foot disease in the elderly. Diabetes Metab. 2007; 35 (1): S56 S65. http://dx.doi.org/10.1016/s1262-3636(07)80057-7.
- 65. Singh S, Jajoo S, Shkla S, Achanya S. Educating patients of diabetes mellitus for diabetic foot care. J Family Med Prim Care. 2020; 9 (10: 367 373. http://dx.doi.org/10.4103/jfmpc.jfmpc_861_19
- 66. Halawa MR, Eid YM, El-Hilaly RA, Abdelsalam MM, Amer AH. Relationship of plantar pressure and glycemic control on type 2 diabetic patients with and without neuropathy. Diabetes &Metab Syndr: Clinical Research & Reviews. 2018; 12 (2): 99 104. http://dx.doi.org/10.1016/j.dsx.2017.09.010
- 67. Luo X, Zheng C, Huang Q, Du z, NI X, Zeng Q. Correlation analysis between foot deformity and diabetic foot with radiographic measurement. Front Clin Diabetes Healthc. 2023; 4: 1121125. http://dx.doi.org/10.3389/fcdhc.2023.1121128.

Cite This Article: Chidiebele Malachy Ezeude, Afoma Marypaula Ezeude, Henry Emeka Ikeabbah, Harriet Chinwe Nwadimkpa (2025). Assessment of Foot Deformity and the Associated Factors among Type 2 Diabetes Mellitus Out-patients: The Scenario from a Tertiary Health Care Facility in South-Eastern Nigeria. *East African Scholars J Med Surg*, 7(11), 325-338.