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Abstract: sickle cell disease is a genetic condition characterized by abnormal red
blood cell morphologies. It can be quite challenging to identify and monitor its
response to treatment. Although deep learning-based models exhibit great potential
in medical image processing, existing approaches often fail to cope with variability
in sickle cell morphology. Additionally, publicly available sickle cell datasets tend
to have a few samples with imbalanced classes. To mitigate the above challenges,
we propose using the synthetic minority sampling technique (SMOTE) mechanism
to handle class imbalances and a deep CNN architecture that aims to capture
complex patterns and descriptive features in a newly created low-resolution sickle
cell dataset from hospitals in eastern Uganda. This could help improve the
efficiency of the diagnosis and classification of the disease. We performed
experiments and examined several algorithms in the literature for related tasks.
Based on the evaluation results, the proposed SMOTE-based DL-SCD outperforms
the best baseline, its variant without the SMOTE component, with a 2.06% increase
in classification accuracy. SDL-SCD could help to conveniently and early detect
sickle cell anemia, especially in low-developed settings where medical services are
constrained. Our code is accessible at https://github.com/MarthaKJ/sickle-cell-
detection-using-nvidia.
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INTRODUCTION

after which they die [Umar et al., 2023], depriving
several parts of the body of oxygen. Thus, ischemia,

Sickle cell disease (SCD) is the most common
inherited hematologic disorder worldwide and a public
health priority [Kang et al., 2024]. The majority of the
world’s burden of SCD is in sub-Saharan Africa,
affecting millions of people of all ages. It is estimated
that 200, 000 to 300,000 children are born with SCD
every year in Africa alone [Modell and Darlison, 2008,
Kavanagh et al., 2022]. The prevalence of the disease
varies between countries, being approximately 20% in
Cameroon, Ghana, and Nigeria and even increasing to
45% in some parts of Uganda [Egesa et al., 2022].
Because sickle cells have aberrant hemoglobin, they
have a sickle shape and are difficult to pass through
blood vessels [Azar and Wong, 2017]. These stiff and
sticky sickle cells tend to group together and become
lodged in the blood vessel [Li et al., 2017, Nader et al.,
2020]. The sickle cells can only live for 10 to 20 days,

pain, and other subsequent complications. The
symptoms of severe anemia include yellowing of the
skin, delayed growth and development, difficulty in
breathing, and enlargement or inflammation of the hands
and legs [Ware et al., 2017]. Severe and debilitating pain
episodes can occur in the chest, abdomen, joints, and
bones. In addition, patients may also have an increased
risk of organ damage, infections, exhaustion, and visual
impairment [Dirksen et al., 2011, GREEN and
CONLEY, 1951]. The conventional method is to test a
patient’s blood sample for sickle cell anemia. Often it is
challenging to observe. sickle cells [Sharma et al., 2016].
Various methods have been developed for the screening
and diagnosis of Sickle Cell Disease, including
laboratory-based methods such as high-performance
liquid chromatography and genetic tests. Other effective
measures of sickle cell detection include deep learning-
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based convolutional networks. Owing to the fact that
convolutional neural networks (CNNs) are efficient in
spotting patterns in images [Liu et al., 2018], yet, sickle
cells have unique shapes and patterns that these CNNs
can learn to recognize, this research utilises CNNs to
detect sickle cell anemia. The investigation of image
processing for sickle cell anaemia detection has received
a lot of attention lately.

Related Work

In this section, the related methods and studies
presented in the literature are discussed. The review is
organized into three main categories: Multistage
approaches, feature-based techniques, and deep learning-
based methods for sickle cell anemia detection

Traditional Image Processing-Based Methods

Often, related studies use a multi-stage
approach that includes several independent phases like
image pre-processing, segmenting cells, extracting
features, and classifying individual cells using different
machine learning models for instance, [Savitt and
Goldberg, 1989] proposed a technique to identify sickle
cell morphology from blood smear pictures using
fractional dimensions. They wused a variety of
segmentation  strategies, including  cluster-based
segmentation and edge detection. Note that CNNs are
capable of automatically extracting pertinent features
from blood smear images, yet the fractional dimension
technique requires manual feature engineering [Kumar et
al., 2021]. In addition, clustering-based segmentation
and manual feature extraction from thin blood smear
images were presented by [Barpanda, 2013]. In [Chy and
Rahaman, 2018], another method is proposed that uses
traditional image processing techniques. The approach
involves collecting blood images, preprocessing them
using grayscale conversion and filtering, isolating red
blood cells using threshold segmentation, and extracting
information such as aspect ratio, entropy, and statistical
measurements. A support vector machine classifier is
then trained on these attributes to provide diagnosis.
Additionally, [Elsalamony, 2017] utilized the Circular
Hough Transform (CHT) for cell differentiation, and
Elsalamony implemented a two-step process comprising
shape signature methodology followed by neural
network classification; our CNN model provides a more
comprehensive and likely more effective method. While
beneficial for many situations, this multi-stage procedure
frequently accumulates errors in its independent sub-
tasks, reducing the accuracy of the final findings.

Feature-based Techniques

Several studies have utilized machine learning
techniques  alongside  feature  engineering  for
classification tasks. Work in [Gual-Arnau et al., 2015],
relies on established feature sets such as Fourier
coefficients and form attributes. In addition, Clustering-
based segmentation and manual feature extraction from
thin blood smear images were presented by [Barpanda,
2013]. Furthermore, [Elsalamony, 2017] utilized the

Circular  Hough  Transform (CHT) for cell
differentiation, and Elsalamony implemented a two-step
process comprising shape signature methodology
followed by neural network classification; our CNN
model provides a more comprehensive and likely more
effective method. These methods involve sophisticated
feature extraction phases, which can be time-consuming
and error-prone, especially when used to massive data
sets.

Deep learning-based graph embedding methods

Deep learning approaches are growing as an
appealing option for automating feature extraction and
categorization. [Xu et al., 2017] proposed a two-stage
technique that uses AlexNet to isolate categorization
from region-of-interest (ROI) extraction. To detect odd
sickle cell presence, the ROI was first extracted from red
blood cells and then classified using the AlexNet model.
This method separates feature extraction from
classification, which can still result in inconsistencies
regardless of whether it is successful. CNNs are capable
of automatically extracting pertinent features from blood
smear images, yet the fractional dimension technique
necessitates manual feature engineering [Kumar et al.,
2021]. Although these methods work well, particularly
in settings with limited resources, the majority of them
rely on preset characteristics or require separate subtasks.
The accuracy and caliber of the final outcomes can be
significantly impacted by the accumulation of errors in
these subtasks.

While some of the above approaches are
effective, especially in resource-constrained
environments, the majority of these strategies are based
on predetermined features. Moreover, the errors in the
independent  sub-tasks characterizing the above
strategies may result in large accumulated errors that
severely affect the accuracy and quality of the end
results. To overcome these challenges, we propose end-
to-end deep learning that can identify intricate patterns in
sickle cell shape that would be difficult for traditional
machine learning approaches to detect. The proposed
SDL-SCD is capable of automatically learning complex
low- and high-level features, and hierarchical
representations and does away with the requirement for
distinct phases by combining feature extraction and
classification into a single end-to-end learning process.
This strategy has the potential to result in more robust
categorization and can be enhanced by leveraging
transfer learning and GPU acceleration. Below we
summarise the major contributions of our proposed SDL -
SCD model.

First, we prepare the relatively large raw sickle
cell dataset, extracted from local hospitals in Eastern
Uganda to be fit for learning models. To the best of our
knowledge, no publication has been made on this dataset
yet.
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Second, the study solves the class imbalance in
the dataset, by effectively adapting SMOTE to
oversample the minority class(negative).

Lastly, we thoroughly evaluate the proposed
SDL-SCD model and demonstrate its efficiency in sickle
cell detection as compared to the baseline models.

Proposed method

The processed SDL-SCD architecture consists
of image preprocessing, class balancing with data
argumentation using SMOTE, and deep learning-based
categorization.

Data collection

Our dataset comprises medical images
depicting blood smear samples, which are divided into
two classes: Negative: These images depict normal red
blood cells absent of sickle cell characteristics. Positive:
These images show the typical “sickle-shaped” cells
associated with sickle cell disease.

The dataset that was used includes real-world
samples from the referral hospitals in Kumi and Soroti.
140 patients submitted data samples, which were
processed by applying the Leichman Strains and field
strains techniques. The initial dataset is highly
imbalanced with far more positives than negative
samples.

Preprocessing

To ensure that each image has a uniform input
size for a deep learning algorithm, these steps are taken:
Grayscale Conversion: Color distinctions in medical
imaging often provide insufficient information for
classification. We decrease the complexity of
computation by transforming the images to grayscale,
allowing the model to focus on the structural properties
of the cells (such as shape, density, and texture), which
are more important for sickle cell detection. Image
Resizing: Each image is scaled to a consistent size of
100x100 pixels. This standardization guarantees that the
model processes all inputs uniformly, hence increasing
training efficiency and accuracy. The scaling is done
carefully to preserve crucial properties such as the form
of sickle cells, which is essential for accurate diagnosis.
Normalization: Image pixels are normalized to ensure
that all photos have the same scale, which improves the
model’s generalization.

Addressing Class Imbalance using SMOTE

The primary issue in this study is the visible
variance in the number of negative (nonsickle cell) and
positive (sickle cell) samples. This mismatch may bias
the model toward forecasting the majority class, limiting
its effectiveness in discovering negative cases.

To address this issue, we use the Synthetic
Minority Oversampling Technique (SMOTE). SMOTE
is an increasingly common technique for oversampling

the minority class using generated samples. Instead of
just copying existing images, SMOTE generates new
synthetic samples by applying interpolation to existing
negative samples. This strategy captures differences in
sickle cell form, giving the model more diverse examples
and allowing it to better distinguish between normal and
sickle cells. This is how SMOTE works; The
underrepresented class (negative) is identified by the
algorithm. SMOTE then creates synthetic samples by
adding additional data points between the line segments
that connect existing samples, starting with the minority
sample and working its way up to its k-nearest neighbors.
Through this approach, the dataset gains depth and
variety without experiencing overfitting.

Proposed SDL-SCD model

Raw input image data

v

Data preprocessing
(resizing, conversion to array)

v

L SMOTE based sampling

(minimise class imbalance effect)
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‘ Model training r_

Is
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Figure 1: The process starts with acquiring input
that is in image format, then a preprocessing phase
which includes data cleaning, Images are converted

into an array using cv2 and then resized to 150
pixels. The SMOTE-based sampling approach is
then performed to oversample the negative images.
A CNN-based classification model comprising of the
convolution, pooling, and fully connected neurons is
trained to extract and learn features for detecting
the presence or absence of sickle cells in the image

Figure 6 summarizes the process that starts with
acquiring input that is in image format, then a
preprocessing phase which includes data cleaning,
images are converted into an array using cv2 and then
resized to 150 pixels. The SMOTE-based sampling
approach is then performed to over-sample the negative
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images. A CNN-based classification model composed of trained to extract and learn characteristics to detect the
fully connected and convolution-constrained neurons is presence or absence of sickle cells in the image.
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Figure 2: Dealing with imbalances, our dataset before and after applying SMOTE to over-sample the negative
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Thanks to SMOTE based sampling approach, positive one was minimized, This consequently
the class imbalanced effect in the dataset where the improved the model performance by reducing the
negative class had fewer samples as compared to the model’s bias against the negative class.
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Figure 3: Shows sample of the dataset images. on right is a sample of a positive image and the right is a sample of
a negative image justified by the macro package automatically
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Training the Model

Our model was trained using CNN. A batch size
of 32 was used during the training process to ensure the
effective use of computational resources and model
convergence. We selected the Adam optimizer because
dynamically modifies learning rates to guarantee steady
training. A learning rate of 0.0001, which provides a
balance between stability and divergence speed, enabling
the model to progressively lower the error without
overfitting. Categorical cross-entropy was used as the

loss function, which is suitable for multi-class
classification problems such as differentiating sickle cell
victims from healthy individuals. We then trained our
model with 50 epochs and generalized the model’s
performance by tracking its evaluation on the validation
data at the end of each epoch. Thereafter, metrics like
accuracy and loss over the epochs were plotted aiding in
identifying over-fitting. 80% of the dataset was utilized
as training data, and 20% was used for validation.

Table 1: Summary of classification results including Precision, Recall, and F1-score.

Algorithm Accuracy Precision Recall F1-Score
Decision Trees 0.91 0.91 0.91 0.91
Random Forest 0.97 0.97 0.97 0.97
Support Vector Machine | 0.97 0.97 0.97 0.97
CNN without SMOTE 0.84 0.78 0.90 0.84
CNN with SMOTE 0.99 0.99 0.99 0.99
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Figure 4: Training and validation and loss curves for a model that was trained with SMOTE
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Figure 5: Training and validation loss curves for a model that was trained before applying SMOTE

Comparison Methods

We then compared the results of the model with
other algorithms, including, decision trees and random
forest Support Vector Machine and we got lower

accuracy compared to CNN??. We also used images
outside the dataset to test our model and gave us accurate
results.
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Figure 6: The graph below shows how different models performed

DISCUSSION

To detect sickle cells, we suggested a unique
Convolutional Neural Network (CNN) architecture.
With the help of convolutional and pooling layers, which
apply features to scan the input data and find local
patterns, our method makes use of feature extraction,
which is a technique that gradually creates more
sophisticated feature representations. Through the
extraction of these data, the deep CNN is able to learn
patterns and combinations that differentiate sickle cells
from healthy ones. We were able to decrease the
dimensionality of the data through feature extraction,
which made it easier to handle and more effective for
model training.

Analysis of prediction accuracy measurement with
other algorithms

The study evaluated the -effectiveness of
combining CNN with other algorithms including SVM,
Random Forest, and Decision Trees. CNN with SMOTE
outperformed SVM with 97% accuracy, random forest
with 97%, and decision trees with 91%. However, these
models may miss intricate patterns in sickle cell images
due to human feature engineering.

Limitations and future work
The small size and imbalanced class
distribution of our dataset presented two difficulties.

Although we used SMOTE oversampling to
address the class imbalance problem, more advanced
approaches could be adopted to boost the classification
accuracy. Our Future work aims to enhance the accuracy
and robustness of the proposed sickle cell detection
model by gathering more data samples from other
hospitals and integrating it with real world environments.

This will make the model a reliable tool for medical
practitioners.

CONCLUSION

We introduce the SDL-SCD model, an
automated tool for diagnosing sickle cell anemia in blood
samples, offering cost-effectiveness and enhanced
productivity. This system reduces manual examination
expenses and helps in early attention to the disease. This
is a good alternative, especially in low-developed
settings where medical services are so contained due to
limited finance, technology and trained human expertise.
In future work, we hope to integrate the SDL-SCD with
transformers and transfer learning approaches to improve
sickle cell detection accuracy.
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