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Abstract: sickle cell disease is a genetic condition characterized by abnormal red 

blood cell morphologies. It can be quite challenging to identify and monitor its 

response to treatment. Although deep learning-based models exhibit great potential 

in medical image processing, existing approaches often fail to cope with variability 

in sickle cell morphology. Additionally, publicly available sickle cell datasets tend 

to have a few samples with imbalanced classes. To mitigate the above challenges, 

we propose using the synthetic minority sampling technique (SMOTE) mechanism 

to handle class imbalances and a deep CNN architecture that aims to capture 

complex patterns and descriptive features in a newly created low-resolution sickle 

cell dataset from hospitals in eastern Uganda. This could help improve the 

efficiency of the diagnosis and classification of the disease. We performed 

experiments and examined several algorithms in the literature for related tasks. 

Based on the evaluation results, the proposed SMOTE-based DL-SCD outperforms 

the best baseline, its variant without the SMOTE component, with a 2.06% increase 

in classification accuracy. SDL-SCD could help to conveniently and early detect 

sickle cell anemia, especially in low-developed settings where medical services are 

constrained. Our code is accessible at https://github.com/MarthaKJ/sickle-cell-

detection-using-nvidia. 
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INTRODUCTION 
Sickle cell disease (SCD) is the most common 

inherited hematologic disorder worldwide and a public 

health priority [Kang et al., 2024]. The majority of the 

world’s burden of SCD is in sub-Saharan Africa, 

affecting millions of people of all ages. It is estimated 

that 200, 000 to 300,000 children are born with SCD 

every year in Africa alone [Modell and Darlison, 2008, 

Kavanagh et al., 2022]. The prevalence of the disease 

varies between countries, being approximately 20% in 

Cameroon, Ghana, and Nigeria and even increasing to 

45% in some parts of Uganda [Egesa et al., 2022]. 

Because sickle cells have aberrant hemoglobin, they 

have a sickle shape and are difficult to pass through 

blood vessels [Azar and Wong, 2017]. These stiff and 

sticky sickle cells tend to group together and become 

lodged in the blood vessel [Li et al., 2017, Nader et al., 

2020]. The sickle cells can only live for 10 to 20 days, 

after which they die [Umar et al., 2023], depriving 

several parts of the body of oxygen. Thus, ischemia, 

pain, and other subsequent complications. The 

symptoms of severe anemia include yellowing of the 

skin, delayed growth and development, difficulty in 

breathing, and enlargement or inflammation of the hands 

and legs [Ware et al., 2017]. Severe and debilitating pain 

episodes can occur in the chest, abdomen, joints, and 

bones. In addition, patients may also have an increased 

risk of organ damage, infections, exhaustion, and visual 

impairment [Dirksen et al., 2011, GREEN and 

CONLEY, 1951]. The conventional method is to test a 

patient’s blood sample for sickle cell anemia. Often it is 

challenging to observe. sickle cells [Sharma et al., 2016]. 

Various methods have been developed for the screening 

and diagnosis of Sickle Cell Disease, including 

laboratory-based methods such as high-performance 

liquid chromatography and genetic tests. Other effective 

measures of sickle cell detection include deep learning-
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based convolutional networks. Owing to the fact that 

convolutional neural networks (CNNs) are efficient in 

spotting patterns in images [Liu et al., 2018], yet, sickle 

cells have unique shapes and patterns that these CNNs 

can learn to recognize, this research utilises CNNs to 

detect sickle cell anemia. The investigation of image 

processing for sickle cell anaemia detection has received 

a lot of attention lately. 

 

Related Work 

In this section, the related methods and studies 

presented in the literature are discussed. The review is 

organized into three main categories: Multistage 

approaches, feature-based techniques, and deep learning-

based methods for sickle cell anemia detection 

 

Traditional Image Processing-Based Methods 

Often, related studies use a multi-stage 

approach that includes several independent phases like 

image pre-processing, segmenting cells, extracting 

features, and classifying individual cells using different 

machine learning models for instance, [Savitt and 

Goldberg, 1989] proposed a technique to identify sickle 

cell morphology from blood smear pictures using 

fractional dimensions. They used a variety of 

segmentation strategies, including cluster-based 

segmentation and edge detection. Note that CNNs are 

capable of automatically extracting pertinent features 

from blood smear images, yet the fractional dimension 

technique requires manual feature engineering [Kumar et 

al., 2021]. In addition, clustering-based segmentation 

and manual feature extraction from thin blood smear 

images were presented by [Barpanda, 2013]. In [Chy and 

Rahaman, 2018], another method is proposed that uses 

traditional image processing techniques. The approach 

involves collecting blood images, preprocessing them 

using grayscale conversion and filtering, isolating red 

blood cells using threshold segmentation, and extracting 

information such as aspect ratio, entropy, and statistical 

measurements. A support vector machine classifier is 

then trained on these attributes to provide diagnosis. 

Additionally, [Elsalamony, 2017] utilized the Circular 

Hough Transform (CHT) for cell differentiation, and 

Elsalamony implemented a two-step process comprising 

shape signature methodology followed by neural 

network classification; our CNN model provides a more 

comprehensive and likely more effective method. While 

beneficial for many situations, this multi-stage procedure 

frequently accumulates errors in its independent sub-

tasks, reducing the accuracy of the final findings. 

 

Feature-based Techniques 

Several studies have utilized machine learning 

techniques alongside feature engineering for 

classification tasks. Work in [Gual-Arnau et al., 2015], 

relies on established feature sets such as Fourier 

coefficients and form attributes. In addition, Clustering-

based segmentation and manual feature extraction from 

thin blood smear images were presented by [Barpanda, 

2013]. Furthermore, [Elsalamony, 2017] utilized the 

Circular Hough Transform (CHT) for cell 

differentiation, and Elsalamony implemented a two-step 

process comprising shape signature methodology 

followed by neural network classification; our CNN 

model provides a more comprehensive and likely more 

effective method. These methods involve sophisticated 

feature extraction phases, which can be time-consuming 

and error-prone, especially when used to massive data 

sets. 

 

Deep learning-based graph embedding methods 

Deep learning approaches are growing as an 

appealing option for automating feature extraction and 

categorization. [Xu et al., 2017] proposed a two-stage 

technique that uses AlexNet to isolate categorization 

from region-of-interest (ROI) extraction. To detect odd 

sickle cell presence, the ROI was first extracted from red 

blood cells and then classified using the AlexNet model. 

This method separates feature extraction from 

classification, which can still result in inconsistencies 

regardless of whether it is successful. CNNs are capable 

of automatically extracting pertinent features from blood 

smear images, yet the fractional dimension technique 

necessitates manual feature engineering [Kumar et al., 

2021]. Although these methods work well, particularly 

in settings with limited resources, the majority of them 

rely on preset characteristics or require separate subtasks. 

The accuracy and caliber of the final outcomes can be 

significantly impacted by the accumulation of errors in 

these subtasks. 

 

While some of the above approaches are 

effective, especially in resource-constrained 

environments, the majority of these strategies are based 

on predetermined features. Moreover, the errors in the 

independent sub-tasks characterizing the above 

strategies may result in large accumulated errors that 

severely affect the accuracy and quality of the end 

results. To overcome these challenges, we propose end-

to-end deep learning that can identify intricate patterns in 

sickle cell shape that would be difficult for traditional 

machine learning approaches to detect. The proposed 

SDL-SCD is capable of automatically learning complex 

low- and high-level features, and hierarchical 

representations and does away with the requirement for 

distinct phases by combining feature extraction and 

classification into a single end-to-end learning process. 

This strategy has the potential to result in more robust 

categorization and can be enhanced by leveraging 

transfer learning and GPU acceleration. Below we 

summarise the major contributions of our proposed SDL-

SCD model. 

 

First, we prepare the relatively large raw sickle 

cell dataset, extracted from local hospitals in Eastern 

Uganda to be fit for learning models. To the best of our 

knowledge, no publication has been made on this dataset 

yet. 
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Second, the study solves the class imbalance in 

the dataset, by effectively adapting SMOTE to 

oversample the minority class(negative). 

 

Lastly, we thoroughly evaluate the proposed 

SDL-SCD model and demonstrate its efficiency in sickle 

cell detection as compared to the baseline models. 

 

Proposed method 

The processed SDL-SCD architecture consists 

of image preprocessing, class balancing with data 

argumentation using SMOTE, and deep learning-based 

categorization. 

 

Data collection 

Our dataset comprises medical images 

depicting blood smear samples, which are divided into 

two classes: Negative: These images depict normal red 

blood cells absent of sickle cell characteristics. Positive: 

These images show the typical ”sickle-shaped” cells 

associated with sickle cell disease. 

 

The dataset that was used includes real-world 

samples from the referral hospitals in Kumi and Soroti. 

140 patients submitted data samples, which were 

processed by applying the Leichman Strains and field 

strains techniques. The initial dataset is highly 

imbalanced with far more positives than negative 

samples. 

 

Preprocessing 

To ensure that each image has a uniform input 

size for a deep learning algorithm, these steps are taken: 

Grayscale Conversion: Color distinctions in medical 

imaging often provide insufficient information for 

classification. We decrease the complexity of 

computation by transforming the images to grayscale, 

allowing the model to focus on the structural properties 

of the cells (such as shape, density, and texture), which 

are more important for sickle cell detection. Image 

Resizing: Each image is scaled to a consistent size of 

100x100 pixels. This standardization guarantees that the 

model processes all inputs uniformly, hence increasing 

training efficiency and accuracy. The scaling is done 

carefully to preserve crucial properties such as the form 

of sickle cells, which is essential for accurate diagnosis. 

Normalization: Image pixels are normalized to ensure 

that all photos have the same scale, which improves the 

model’s generalization. 

 

Addressing Class Imbalance using SMOTE 

The primary issue in this study is the visible 

variance in the number of negative (nonsickle cell) and 

positive (sickle cell) samples. This mismatch may bias 

the model toward forecasting the majority class, limiting 

its effectiveness in discovering negative cases. 

 

To address this issue, we use the Synthetic 

Minority Oversampling Technique (SMOTE). SMOTE 

is an increasingly common technique for oversampling 

the minority class using generated samples. Instead of 

just copying existing images, SMOTE generates new 

synthetic samples by applying interpolation to existing 

negative samples. This strategy captures differences in 

sickle cell form, giving the model more diverse examples 

and allowing it to better distinguish between normal and 

sickle cells. This is how SMOTE works; The 

underrepresented class (negative) is identified by the 

algorithm. SMOTE then creates synthetic samples by 

adding additional data points between the line segments 

that connect existing samples, starting with the minority 

sample and working its way up to its k-nearest neighbors. 

Through this approach, the dataset gains depth and 

variety without experiencing overfitting. 

 

Proposed SDL-SCD model 

 

 
Figure 1: The process starts with acquiring input 

that is in image format, then a preprocessing phase 

which includes data cleaning, Images are converted 

into an array using cv2 and then resized to 150 

pixels. The SMOTE-based sampling approach is 

then performed to oversample the negative images. 

A CNN-based classification model comprising of the 

convolution, pooling, and fully connected neurons is 

trained to extract and learn features for detecting 

the presence or absence of sickle cells in the image 

 

Figure 6 summarizes the process that starts with 

acquiring input that is in image format, then a 

preprocessing phase which includes data cleaning, 

images are converted into an array using cv2 and then 

resized to 150 pixels. The SMOTE-based sampling 

approach is then performed to over-sample the negative 
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images. A CNN-based classification model composed of 

fully connected and convolution-constrained neurons is 

trained to extract and learn characteristics to detect the 

presence or absence of sickle cells in the image. 

 

 
Figure 1: Before sampling 

 

 
Figure 2: Dealing with imbalances, our dataset before and after applying SMOTE to over-sample the negative 

images 

 

Thanks to SMOTE based sampling approach, 

the class imbalanced effect in the dataset where the 

negative class had fewer samples as compared to the 

positive one was minimized, This consequently 

improved the model performance by reducing the 

model’s bias against the negative class. 

 

 
Figure 3: Shows sample of the dataset images. on right is a sample of a positive image and the right is a sample of 

a negative image justified by the macro package automatically 
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Training the Model 

Our model was trained using CNN. A batch size 

of 32 was used during the training process to ensure the 

effective use of computational resources and model 

convergence. We selected the Adam optimizer because 

dynamically modifies learning rates to guarantee steady 

training. A learning rate of 0.0001, which provides a 

balance between stability and divergence speed, enabling 

the model to progressively lower the error without 

overfitting. Categorical cross-entropy was used as the 

loss function, which is suitable for multi-class 

classification problems such as differentiating sickle cell 

victims from healthy individuals. We then trained our 

model with 50 epochs and generalized the model’s 

performance by tracking its evaluation on the validation 

data at the end of each epoch. Thereafter, metrics like 

accuracy and loss over the epochs were plotted aiding in 

identifying over-fitting. 80% of the dataset was utilized 

as training data, and 20% was used for validation. 

 

Table 1: Summary of classification results including Precision, Recall, and F1-score. 

Algorithm Accuracy Precision Recall F1-Score 

Decision Trees 0.91 0.91 0.91 0.91 

Random Forest 0.97 0.97 0.97 0.97 

Support Vector Machine 0.97 0.97 0.97 0.97 

CNN without SMOTE 0.84 0.78 0.90 0.84 

CNN with SMOTE 0.99 0.99 0.99 0.99 

 

 
Figure 4: Training and validation and loss curves for a model that was trained with SMOTE 

 

 
Figure 5: Training and validation loss curves for a model that was trained before applying SMOTE 

 

Comparison Methods 

We then compared the results of the model with 

other algorithms, including, decision trees and random 

forest Support Vector Machine and we got lower 

accuracy compared to CNN??. We also used images 

outside the dataset to test our model and gave us accurate 

results. 
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Figure 6: The graph below shows how different models performed 

 

DISCUSSION 
To detect sickle cells, we suggested a unique 

Convolutional Neural Network (CNN) architecture. 

With the help of convolutional and pooling layers, which 

apply features to scan the input data and find local 

patterns, our method makes use of feature extraction, 

which is a technique that gradually creates more 

sophisticated feature representations. Through the 

extraction of these data, the deep CNN is able to learn 

patterns and combinations that differentiate sickle cells 

from healthy ones. We were able to decrease the 

dimensionality of the data through feature extraction, 

which made it easier to handle and more effective for 

model training. 

 

Analysis of prediction accuracy measurement with 

other algorithms 

The study evaluated the effectiveness of 

combining CNN with other algorithms including SVM, 

Random Forest, and Decision Trees. CNN with SMOTE 

outperformed SVM with 97% accuracy, random forest 

with 97%, and decision trees with 91%. However, these 

models may miss intricate patterns in sickle cell images 

due to human feature engineering. 

 

Limitations and future work 

The small size and imbalanced class 

distribution of our dataset presented two difficulties. 

 

Although we used SMOTE oversampling to 

address the class imbalance problem, more advanced 

approaches could be adopted to boost the classification 

accuracy. Our Future work aims to enhance the accuracy 

and robustness of the proposed sickle cell detection 

model by gathering more data samples from other 

hospitals and integrating it with real world environments. 

This will make the model a reliable tool for medical 

practitioners. 

 

CONCLUSION 
We introduce the SDL-SCD model, an 

automated tool for diagnosing sickle cell anemia in blood 

samples, offering cost-effectiveness and enhanced 

productivity. This system reduces manual examination 

expenses and helps in early attention to the disease. This 

is a good alternative, especially in low-developed 

settings where medical services are so contained due to 

limited finance, technology and trained human expertise. 

In future work, we hope to integrate the SDL-SCD with 

transformers and transfer learning approaches to improve 

sickle cell detection accuracy. 
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