

East African Scholars Journal of Engineering and Computer Sciences
Abbreviated Key Title: East African Scholars J Eng Comput Sci
ISSN: 2617-4480 (Print) & ISSN: 2663-0346 (Online)

Published By East African Scholars Publisher, Kenya

Volume-4 | Issue-10 | Dec-2021 | DOI: 10.36349/easjecs.2021.v04i10.007

*Corresponding Author: Dr. Vadivel G 166
Associate Professor IT, Bhai Gurdas Institute of Engineering & Technology, Sangrur, Punjab

Review Article

Influence of Anti-Patterns Detection Techniques on Software Maintenance

Dr. Vadivel G1*, Er. Abhinash Singla2, Er. Sanju Kumari2
1Associate Professor IT, Bhai Gurdas Institute of Engineering & Technology, Sangrur, Punjab
2Assistant Professors IT, Bhai Gurdas Institute of Engineering & Technology, Sangrur, Punjab

Article History

Received: 18.10.2021

Accepted: 29.11.2021

Published: 30.12.2021

Journal homepage:

https://www.easpublisher.com

Quick Response Code

Abstract: Anti-patterns are flaws that adversely impact the quality of the system.

The term "Code Smell" refers to a sign that there are anti-patterns in software,

which prompts system restructuring. As a result, managing the maintenance

becomes challenging. Refactoring is required more when the number of smells

increases. Different methods for detecting anti-patterns in the system have been

found. The research sought to examine how anti-patterns affect classes and which

specific anti-patterns have a greater influence than others. A conclusion has been

reached regarding the findings for upcoming research on open-source systems. The

introduction is followed by the various anti-patterns in the first of the paper's four

sections. Additionally, the associated work has been thoroughly analysed, followed

by a succinct conclusion. Thus, the study presents many methods for identifying

software system code smells. Therefore, odour detection will be useful in

increasing reliability during testing and maintenance phases by foreseeing anti-

patterns and errors before to product delivery. Additionally, the community of

software engineers and managers will benefit from the identification of anti-

patterns by using it to enhance software development maintenance efforts.

Keywords: Anti-patterns, Code Smells, Refactoring and Maintenance.
Copyright © 2021 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original

author and source are credited.

1. INTRODUCTION
Software systems need intelligent development

and ongoing maintenance to be of high quality.

Numerous quality assurance procedures, including

formal technical reviews, testing, and standard

enforcement, can improve quality. Every time new

software needs to be created, existing resources (source

code files, design templates) are used in the creation

process. But most of the time, the performance and

quality of the software suffer when software

components can be reused. Software libraries, design

patterns, frameworks, and systematic software reuse are

a few typical examples of software reusability. The

phrase "Design Patterns" was coined by software

developers to describe situations in which a problem

occurs repeatedly and a usual solution is required.

However, the design patterns frequently begin

acting as "ANTI-PATTERNS." These design flaws are

known as anti-patterns or code smells. If there are code

smells, maintenance of the system is required. The

presence of anti-patterns in the system is suggested by

the term "code smell." The more scents there are, the

more care is required. Anti-Patterns are characterised as

a traditional design that offers a solution to a problem

that could have unfavourable effects. Anti-patterns are

therefore viewed as the bad solutions that create more

issues than they solve. As a result, the system begins to

demand Refactoring [6].

The goal of the study is to reveal the anti-

patterns that frequently occur in systems and are

normally described in [5, 6]. The work completed will

benefit the community of software engineers and

managers in order to enhance the activities involved in

software development and maintenance.

2. ANTI-PATTERNS IN SOFTWARE

SYSTEM
The design of the software is what defines its

quality. As time goes on and adjustments are made to

the structure as a result of shifting user demands, the

design begins to fall apart. Anti-patterns or "Code

Smells" are two ways that software flaws manifest

themselves [6]. The distinction between a code smell

and an anti-pattern is extremely subtle. Anti-patterns are

viewed as poor programming practises, not mistakes.

Due of the software developers' inexperience and lack

of expertise, anti-patterns are being added into the

literature to address certain issues. Code Smell is a

Vadivel G et al; East African Scholars J Eng Comput Sci; Vol-4, Iss-10 (Dec, 2021): 166-172

© East African Scholars Publisher, Kenya 167

symptom that identifies a software system issue [5]. It

implies the admission of anti-patterns. Although

technically correct, code smells point to delicate design.

It could result in system failure and future bug risk.

Refactoring is therefore required by the system, which

involves modifying the current software code without

changing the external behaviour. In [6], nearly 20 code

smells are listed that are present in the source code and

call for refactoring. The following author suggests the

following categories of anti-patterns/code smells.

Table 1: Types of Anti-Patterns

Author Name Anti-pattern/Code Smells

M. Fowler [6] Lazy Class, Large Class, Long Method, Long Parameter List, Message Chain, Duplicate

Code, Divergent Change, Shot Gun Surgery, Feature Envy, Data Clumps, Primitive

Obsession, Switch Statements, Parallel Inheritance Hierarchies, Middle Man, Speculative

Generality, Inappropriate Intimacy, Temporary Field

B.F. Webster [1] and W.

J. Brown et al., [5]

Blob, Spaghetti Code, Conditional Complexity, Anti-Singleton, Class Data Should Be Private

(CDSBP), Refused Parent Bequest (RPB), Swiss Army Knife

3. RELATED WORK
Work on patterns produces anti-patterns. These

are seen as poor design decisions rather than mistakes.

Code smells are a sign that anti-patterns are present.

Andrew Koenig coined the term "anti-pattern" when he

first discussed how patterns are perceived in software

engineering [3]. Code smells and anti-patterns are

phrases that are frequently used synonymously.

A number of authors investigated the impact of

code smells and anti-patterns on software systems. The

work investigates code smells and antipatterns in the

context of software engineering activities. Webster [1],

who also discusses the dangers associated with coding

and quality assurance, wrote the first book on odours.

According to [5], object-oriented systems require care.

In [5], more than 35 odours were listed, including the

well-known "BLOB" design smell. Due to nearly 20

code smells, the idea of refactoring was introduced in

[6]. The word "refactoring," which refers to the process

of updating a software system without changing its

external behaviour, was explained in depth by the

author. As examples of code smells, the author listed

Lazy Class, Long Method, Long Parameter List,

Shotgun Surgery, etc. The aforementioned authors offer

in-depth knowledge on anti-patterns and code smells.

However, the authors' strategy for identifying anti-

patterns was entirely manual. For large projects, it was

a labour-intensive and error-prone task. Thus, some

studies suggested the statistical, visual, and automatic

detection strategies.

3.1 Traditional Detection Techniques

The researchers introduced various strategies

for manually identifying anti-patterns and code smells

in the system in addition to the usual detection

techniques. The development of automatic and semi-

automatic anti-pattern detection methods began with

this. The methods used range from software reading to

metric-based and template-driven approaches. Here, a

few of the methods are discussed:

Travassos and F. Shull made the manual

detection approach [31] suggestion [7]. It was a method

of reading software that aided in Object Oriented

Systems' ability to detect odours. Defect-based reading,

perspective-based reading, and use-based reading are

only a few of the various reading techniques that have

been used for detection. The team of students created a

project that was evaluated on two criteria: horizontal

review and vertical review. The process took a lot of

time and was entirely manual.

Connie U. Smith and Lloyd G. William [8]

looked into the system's impact of the anti-pattern God

Class and provided solutions. Additionally, they

suggested three additional performance antipatterns that

are prevalent in software systems. A metric-based

approach for the detection of anti-patterns was

introduced by R. Marinescu [14]. The method was

implemented on Tool plasma. Nearly the same amount

of approaches were used to identify more than 8 anti-

patterns. The threshold values were contrasted with

metrics and set operator values.

A template-driven model was proposed by

M.J. Munro [16] to identify anti-patterns. The template

has three parts: the name of the fragrance, Textual

description of code smell characteristics Heuristics for

odour recognition. He looked at the product metrics for

detecting "bad odours" in Java source code. The

research sought to determine the peculiarity of code

smell using metrics. The metrics findings that are

applied to Java source-code were calculated using

interpretation rules. Therefore, the locations of foul

odours in the Java code may be easily determined based

on the estimated results. On two case studies, a

prototype tool has been employed for the

implementation.

A language developed by H. Alikacem and H.

Sahraoui [20] identifies quality characteristics that are

overlooked and offers a mechanism for smelling out

odours in object-oriented systems. With the assistance

of fuzzy logic, metrics, association, and inheritance, the

terminology offered the rules. However, it wasn't tested

on any actual projects in the real world. R. Allen and D.

Vadivel G et al; East African Scholars J Eng Comput Sci; Vol-4, Iss-10 (Dec, 2021): 166-172

© East African Scholars Publisher, Kenya 168

Garlan [2, 4], E.M. Dashofy and A. vander Hoek et al.,

[17] all address further similar detection methods.

3.2 Visualization Based Detection Techniques

The researchers employed a variety of methods

for visualization-based detection strategies, including

Metric Based Visualization Technique, Visualized

Design Defect Detection Strategy, Domain Specific

Language, etc. Here, a few of the methods are

discussed.

A potent method to examine the internal

software quality using a metric-based visualisation

approach was proposed by E. Simon et al., [10]. Move

function, move attribute, extract class, and inline class

were the four types of source code restructuring that

have been examined. Crocodile, an improved metric

tool, had been employed. The method allowed the

software engineers to spot the "code smells" by clicking

the mouse and adhering to the visualisation guidelines.

A visualisation strategy was laid forth by E.

Langelier et al., [19] for the quality analysis of large-

scale systems. A framework had been offered, and open

source software had been used to implement it. The

classes were represented using geometric 3D boxes.

The metrics for coupling, cohesion, inheritance, and

size complexity (CBO, LCOM5, DIT) have their values

analysed. WMC metrics were applied.

A technique based on visualisation for design

fault detection was presented by K. Dhambri et al.,

[25]. Blob, functional decomposition, and divergent

change are the three forms of anomalies for which the

technique has been validated. In the near future, the

study will expand to include an automatic detection-

based approach.

The investigation of offensive odours during

the designing process was undertaken by Cedric

Bouhours et al., For the purpose of identifying

offensive odours, the spoiled patterns had been focused.

Spoiled patterns are those that didn't give the system

they were created for the required functionality,

according to the definition of a spoiled pattern. There

had been a comparison between design patterns and

ruined patterns.

For the purpose of uncovering anti-patterns,

Naouel Moha et al., [31] established a domain-specific

language based on DECOR.

By following the processes of Description

analysis, Specification, Processing, Detection, and

Validation, it is a method that provides a track for the

description of antipatterns. It deploys a detection system

called DETEX, which serves as a reference instance of

DECOR. On 11 open source systems, more than 15

different types of code odours had been discovered.

3.3 Automatic Detection Techniques

Fully automatic detection tools has been

applied in the automatic detection tactics. A couple of

these methods are proven on real-world systems while

various anti-pattern kinds are discovered. Here, a few of

the methods are discussed:

Three categories of design flaws—intra-class

(inside class), inter-class (among classes), and semantic

nature—were established by Yann-Gael Gueheneuc et

al., [9]. Design patterns had been described using a

meta model. Ptidej Tool could be used to quickly fix

inter-class design flaws. Eva van Emden and Leon

Moonen [11] outlined a method for raising the calibre

of java source code software. The tool for automatic

software inspection can also make use of the final

results. To reveal the smells in Java source code, the

jCOSMO code smell browser was created. The

instrument has been approved for use with

CHARTOON. A hierarchical prototype was suggested

by Jagdish Bansiya and Carl G. Davis [12] for the

assessment of quality attributes (reusability, flexibility,

understandability, etc.) in object-oriented designs.

Using design metrics such as DAM, DCC, CAM, etc.,

architectural and detectable equity of classes and their

objects are computed. The model offered a method for

quickly applying it to projects in the real world.

A tool set called Ptidej, developed by Yann-

Gael Gueheneuc [15], can reliably translate multiple

programming languages into UML class diagrams by

reverse engineering. In order to identify code smells at a

higher level of abstraction, PTIDEJ creates UML class

diagrams. Different reverse engineering tools, including

Rational Rose, ArgoUML version 0.14.1, Chava Fujaba

version 4.0.1 IDEA, Borland Together, and Womble

recover, were briefly described by the author.

The reformation of seven open source Java

systems, including MegaMek, JasperReports, Antlr,

Tyrant, PDFBox, Velocity, and HSQLDB, was

documented by S. Counsell and Y. Hassoun [21]. The

findings showed that renaming and moving fields and

methods across the code are the two most frequently

used re-engineering techniques for open source

systems.

Design Motif Identification Multilayered

Approach (DeMIMA) for the detection of micro

structures was presented by Yann Gael Gueheneuc and

Giuliano Antoniol [26]. (complementary to design

motifs). A copy of the source code was provided by the

first two layers, and design patterns were found by the

third layer in this three-layered architecture. Using

explanation-based constraint programming, the method

provided 100% recall on both the open source and

commercial systems.

To find instances of foul odours in the

software, Stephane Vaucher et al., [28] extensively

Vadivel G et al; East African Scholars J Eng Comput Sci; Vol-4, Iss-10 (Dec, 2021): 166-172

© East African Scholars Publisher, Kenya 169

studied the God. Classes. For the examination of God

Classes, the open-source systems Xerces and Eclipse

JDT had been explored.

IDS (Immune based Detection Strategy), a

machine learning approach powered by the human

body's immune system, was introduced by Salima

Hassaine et al., [32]. If code smells and anti-patterns

were present, the system might be quickly detected. We

personally examined Xerces v2.7.0 and Gantt Project

v1.10.2 for the presence of smells. Bayesian Detection

Expert, a Goal Question Metric (GQM) based method

to build Bayesian Belief Networks (BBNs) from the

descriptions of anti-patterns, was proposed by Foutse

Khomh et al., [34]. Whether a class is an anti-pattern or

not was studied by BBN. Three anti-patterns, including

the Gantt Project and Xerces open source systems,

Blob, Functional Decomposition, and Spaghetti Code,

are validated for BDTEX. Eclipse and JHotDraw are

two commercial projects to which the method is also

applied.

Software metrics and encapsulation have been

found to be important for exposing code smells,

according to Satwinder Singh and K.S. Kahlon [35].

The classification of smells in the code was made

possible by the introduction of a software metric model.

The open source Firefox system had been looked into to

verify the outcomes.

A metric approach was devised by Satwinder

Singh and K.S. Kahlon [36] for analysing the stinky

classes in the system. The study found that identifying

bad classes and bad code may be done with the use of

the metrics' results. Various software analysis code

scent detection techniques are allegedly available on the

market, according to Francesca Arcelli Fontana et al.,

[37], although it is still unclear how accurate this claim

can be made. As a result, six different Gantt Project

iterations have been examined in order to find four

different sorts of code smells utilising more than six

different tools.

Source code changes (SCC) obtained from 16

Java open source systems were taken into account by

Daniele Romano, Paulius Raila, and colleagues when

studying the system [38]. Complex Class, Spaghetti

Code, and Swiss Army Knife are three examples of

anti-patterns. The amount of code changes in antipattern

classes have been found to be higher than the number of

changes without an antipattern.

Foutse Khomh et al., [40] looked into how

antipatterns affected classes. Four systems—ArgoUML,

Eclipse, Mylyn, and Rhino—had more than 50 releases

that were taken into consideration. Anti-patterns come

in 13 different varieties. Investigated is the relationship

between the presence of anti-patterns and the change-

and fault-tendencies. Classes that participate in anti-

patterns are found to be more flawed than others.

Hui Liu et al., [41]. 's goal was to find foul

odours in the code. The effort required to detect

offensive odours has been reduced by a ratio of 17 to

20% according to a newly developed detection

approach.

SMURF, an Anti-pattern Detection Approach,

was described by Abdou Maiga, Nasir Ali, and others

[42]. On three different systems, namely ArgoUML,

Xerces, and Azureus, more than 290 experiments have

been carried out. Blob, Spaghetti Code, Functional

Decomposition, and Swiss Army Knife are four

examples of anti-patterns. The accuracy rate of SMURF

for detecting anti-patterns in the system is higher than

that of DETEX and BDTEX, according to the author.

By integrating the tools required for

refactoring with the code smells, Kwankamol

Nongpong [43] conducted the investigation. A

programme called JcodeCanine had been developed,

and it was capable of quickly identifying code smells

and letting users know where refactoring was required.

Design patterns and anti-patterns are related,

according to Fehmi Jaafar, Yann Gael Gueheneuc, and

others [44]. For the evaluation of relationships, three

open source systems—ArgoUML, JFreeChart, and

XercesJ—had been taken into consideration. It was

determined that there is a tenuous relationship between

design patterns and anti-patterns. More mistake

tendency, which is found in such anti-patterns, was

present in the classes.

The open source systems were investigated by

Harshpreet Kaur Saberwal et al., [45] in order to find

code smells in the classes. For the purpose of smelling

things in the system, an empirical model had been

created. The work is verified using versions of a real-

world project called JfreeChart.

Pandiyavathi and Manochandar [47] proposed

some techniques for identifying systemic code smells.

A time-saving overview of refactoring techniques had

been put forth. The refactoring methods has an

algorithm presented for implementation.

In business processes, Francis Palma et al.,

[48]. 's description of antipattern detection is given. In

order to improve the efficiency of BPEL (Business

Process Execution Language) operations and identify

BP antipatterns, the rule-based approach has been

identified. Three example BPEL processes have been

used to identify four of the seven BP anti-patterns that

have been specified. Francis Palma et al., [49] proposed

that the employment of anti-patterns has an impact on

the quality of service-based systems. According to data

gathered from the SBS FraSCAti, it has been

demonstrated that services that appear to be anti-

Vadivel G et al; East African Scholars J Eng Comput Sci; Vol-4, Iss-10 (Dec, 2021): 166-172

© East African Scholars Publisher, Kenya 170

pattern-suspicious require more maintenance than non-

pattern-suspicious services.

In software quality assurance, Satwinder Singh

and K. S. Kahlon [50] discussed the significance of

metrics and threshold values. Software system risk

analysis was investigated in comparison to threshold

values for the detection of offensive odours. Therefore,

incorrect classes could be quickly discovered based on

threshold values. The three open source versions of

Mozilla Firefox are used to validate the study.

Jiang Dexun, Ma Peijun, and others [51]

hypothesised that functionally unrelated classes could

cause issues with software maintenance. Therefore, it is

necessary to identify and refactor such classes. The

author identified Functional over related classes as a

foul smell (FRC). To identify the offensive odour, a

detection approach was provided. Four open source

systems—HSQLDB, Tyrant, ArgoUML, and

JfreeChart—were used to validate the work.

3.4 Empirical Detection Techniques

The following empirical detection methods

examine the research on code odours and anti-patterns.

Different authors have thought about several anti-

pattern categories. Here is some of the suggested work:

The research on offensive code smells was provided by

Mika Mantyla et al., in their article [13]. The report

offered a taxonomy to help readers better grasp the

odours. The author described various classifications for

offensive odours, including Bloaters, Encapsulators,

Disposables, Couplers, etc. At a Finnish software

company, a survey was conducted, and the results

showed a connection between the odours.

By preventing the usage of hazardous

antipatterns, Foutse Khomh et al., [24] created the

notion of software quality maintenance. The study

found that using anti-patterns had an impact on the

software's quality.

S. Olbrich et al., [27] took into account the

Lucene and Xerces historical data. Classes having the

antipatterns Blob and Shotgun Surgery have been found

to change more frequently than classes without them.

Min Zhang, Tracy Hall, and colleagues [33]

examined more than 300 studies on code foul odours

published since 2000 to provide a thorough

understanding of the field. The report made it clear that

more research is required to fully understand the impact

of code smells. It had been determined that the smell of

duplicated code was more thoroughly researched than

the others.

The effect of anti-patterns on the creation of

open source software was noted by Rabia Bashir [39].

The paper described the anti-patterns that can be found

in the creation of open source software as well as ways

to prevent them.

Various anti-pattern identification methods,

including manual (metric-based approach, metric-based

heuristics, ad hoc domain specific language), semi-

automated (DCPP matrix), and SVM-based methods,

were studied by Harvinder Kaur and Puneet Jai Kaur

[46]. (DTEX, BTEX, SMURF).

4. CONCLUSION
An extensive literature review has been

conducted in this study to highlight the impact of anti-

patterns on the source code. Our research identifies

many techniques for identifying antipatterns and code

smells. It has been determined that the research

community has only evaluated its findings in light of

internal corporation projects. It has been determined

that it is necessary to evaluate the outcomes for various

business undertakings. Additionally, it has been

determined that few scholars have worked on

significant initiatives to identify the anti-patterns. Few

have conducted research on a significant number of

anti-patterns to reveal the significance of these odours.

As a result, there is a need to identify anti-

patterns and the various types of anti-patterns with

respect to how they affect classes in object-oriented

open source projects. As a result, it will be feasible in

the future to identify the often recurring anti-patterns in

open source systems and to look at how they affect

software metrics. As a result, by foreseeing the

problematic classes during the testing phase, the results

would help the software industry improve the quality of

the software system.

By foreseeing errors and anti-patterns before

the product is delivered, it contributes to greater

reliability during testing and maintenance phases.

Engineers will therefore be interested in the outcomes

as well since they can more accurately estimate which

classes will be examined. By identifying code smells,

the study will help managers and software engineers

improve their maintenance tasks.

REFERENCES
1. Webster, B. F. (1995). Pitfalls of object-oriented

development. M & T Books.

2. Garlan, D., Allen, R., & Ockerbloom, J. (1995).

Architectural mismatch: Why reuse is so hard.

IEEE software, 12(6), 17-26.

3. Koenig, A. (1998). Patterns and antipatterns. In

The patterns handbooks: techniques, strategies,

and applications (pp. 383-389).

4. Allen, R., & Garlan, D. (1997). A formal basis for

architectural connection. ACM Transactions on

Software Engineering and Methodology (TOSEM),

6(3), 213-249.

5. Brown, W. H., Malveau, R. C., McCormick, H. W.

S., & Mowbray, T. J. (1998). AntiPatterns:

Vadivel G et al; East African Scholars J Eng Comput Sci; Vol-4, Iss-10 (Dec, 2021): 166-172

© East African Scholars Publisher, Kenya 171

refactoring software, architectures, and projects in

crisis. John Wiley & Sons, Inc..

6. Beck, K., Fowler, M., & Beck, G. (1999). Bad

smells in code. Refactoring: Improving the design

of existing code, 1(1999), 75-88.

7. Travassos, G., Shull, F., Fredericks, M., & Basili,

V. R. (1999). Detecting defects in object-oriented

designs: using reading techniques to increase

software quality. ACM sigplan notices, 34(10), 47-

56.

8. Smith, C. U., & Williams, L. G. (2000,

September). Software performance antipatterns. In

Proceedings of the 2nd international workshop on

Software and performance (pp. 127-136).

9. Guéhéneuc, Y. G., & Albin-Amiot, H. (2001,

July). Using design patterns and constraints to

automate the detection and correction of inter-class

design defects. In Proceedings 39th International

Conference and Exhibition on Technology of

Object-Oriented Languages and Systems. TOOLS

39 (pp. 296-305). IEEE.

10. Simon, F., Steinbruckner, F., & Lewerentz, C.

(2001, March). Metrics based refactoring. In

Proceedings fifth european conference on software

maintenance and reengineering (pp. 30-38). IEEE.

11. Van Emden, E., & Moonen, L. (2002, October).

Java quality assurance by detecting code smells. In

Ninth Working Conference on Reverse

Engineering, 2002. Proceedings. (pp. 97-106).

IEEE.

12. Bansiya, J., & Davis, C. G. (2002). A hierarchical

model for object-oriented design quality

assessment. IEEE Transactions on software

engineering, 28(1), 4-17.

13. Mantyla, M., Vanhanen, J., & Lassenius, C. (2003,

September). A taxonomy and an initial empirical

study of bad smells in code. In International

Conference on Software Maintenance, 2003. ICSM

2003. Proceedings. (pp. 381-384). IEEE.

14. Marinescu, R. (2004, September). Detection

strategies: Metrics-based rules for detecting design

flaws. In 20th IEEE International Conference on

Software Maintenance, 2004. Proceedings. (pp.

350-359). IEEE.

15. Guéhéneuc, Y. G. (2004, November). A

systematic study of UML class diagram

constituents for their abstract and precise recovery.

In 11th Asia-Pacific Software Engineering

Conference (pp. 265-274). IEEE.

16. Munro, M. J. (2005, September). Product metrics

for automatic identification of" bad smell" design

problems in java source-code. In 11th IEEE

International Software Metrics Symposium

(METRICS'05) (pp. 15-15). IEEE.

17. Dashofy, E. M., Hoek, A. V. D., & Taylor, R. N.

(2005). A comprehensive approach for the

development of modular software architecture

description languages. ACM Transactions on

Software Engineering and Methodology (TOSEM),

14(2), 199-245.

18. Guéhéneuc, Y. G. (2005, July). Ptidej: Promoting

patterns with patterns. In Proceedings of the 1st

ECOOP workshop on Building a System using

Patterns. Springer-Verlag (pp. 1-9).

19. Langelier, G., Sahraoui, H., & Poulin, P. (2005,

November). Visualization-based analysis of

quality for large-scale software systems. In

Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering

(pp. 214-223).

20. Alikacem, E. H., & Sahraoui, H. (2006). Generic

metric extraction framework. In Proceedings of

the 16th International Workshop on Software

Measurement and Metrik Kongress

(IWSM/MetriKon) (pp. 383-390).

21. Counsell, S., Hassoun, Y., Loizou, G., & Najjar,

R. (2006, September). Common refactorings, a

dependency graph and some code smells: an

empirical study of Java OSS. In Proceedings of the

2006 ACM/IEEE international symposium on

Empirical software engineering (pp. 288-296).

22. Guéhéneuc, Y. G. (2007, October). Ptidej: A

flexible reverse engineering tool suite. In 2007

IEEE International Conference on Software

Maintenance (pp. 529-530). IEEE.

23. Moha, N., Guéhéneuc, Y. G., Meur, A. F. L.,

Duchien, L., & Tiberghien, A. (2010). From a

domain analysis to the specification and detection

of code and design smells. Formal Aspects of

Computing, 22, 345-361.

24. Khomh, F., & Guéhéneuc, Y. G. (2008, April). Do

design patterns impact software quality

positively?. In 2008 12th European conference on

software maintenance and reengineering (pp. 274-

278). IEEE.

25. Dhambri, K., Sahraoui, H., & Poulin, P. (2008,

April). Visual detection of design anomalies. In

2008 12th European Conference on Software

Maintenance and Reengineering (pp. 279-283).

IEEE.

26. Guéhéneuc, Y. G., & Antoniol, G. (2008).

Demima: A multilayered approach for design

pattern identification. IEEE transactions on

software engineering, 34(5), 667-684.

27. Olbrich, S., Cruzes, D. S., Basili, V., & Zazworka,

N. (2009, October). The evolution and impact of

code smells: A case study of two open source

systems. In 2009 3rd international symposium on

empirical software engineering and measurement

(pp. 390-400). IEEE.

28. Vaucher, S., Khomh, F., Moha, N., & Guéhéneuc,

Y. G. (2009, October). Tracking design smells:

Lessons from a study of god classes. In 2009 16th

working conference on reverse engineering (pp.

145-154). IEEE.

29. Bouhours, C., Leblanc, H., & Percebois, C. (2009).

Bad smells in design and design patterns. The

Journal of Object Technology, 8(3), 43-63.

30. Moha, N., Guéhéneuc, Y. G., Meur, A. F. L.,

Duchien, L., & Tiberghien, A. (2010). From a

Vadivel G et al; East African Scholars J Eng Comput Sci; Vol-4, Iss-10 (Dec, 2021): 166-172

© East African Scholars Publisher, Kenya 172

domain analysis to the specification and detection

of code and design smells. Formal Aspects of

Computing, 22, 345-361.

31. Moha, N., Guéhéneuc, Y. G., Duchien, L., & Le

Meur, A. F. (2009). Decor: A method for the

specification and detection of code and design

smells. IEEE Transactions on Software

Engineering, 36(1), 20-36.

32. Hassaine, S., Khomh, F., Guéhéneuc, Y. G., &

Hamel, S. (2010, September). IDS: An immune-

inspired approach for the detection of software

design smells. In 2010 Seventh International

Conference on the Quality of Information and

Communications Technology (pp. 343-348). IEEE.

33. Min, Zhang., Tracy, Hall. & Nathan, Baddoo.

(2011). Code Bad Smells: a review of current

knowledge,‖ JournalSoftware Maintenance Evol.

Res. Pract., 179– 202.

34. Khomh, F., Vaucher, S., Guéhéneuc, Y. G., &

Sahraoui, H. (2011). BDTEX: A GQM-based

Bayesian approach for the detection of

antipatterns. Journal of Systems and Software,

84(4), 559-572.

35. Singh, S., & Kahlon, K. S. (2012). Effectiveness

of refactoring metrics model to identify smelly and

error prone classes in open source software. ACM

SIGSOFT Software Engineering Notes, 37(2), 1-

11.

36. Singh, S., & Kahlon, K. S. (2011). Effectiveness

of encapsulation and object-oriented metrics to

refactor code and identify error prone classes using

bad smells. ACM SIGSOFT Software Engineering

Notes, 36(5), 1-10.

37. Fontana, F. A., Braione, P., & Zanoni, M. (2012).

Automatic detection of bad smells in code: An

experimental assessment. J. Object Technol.,

11(2), 5-1.

38. Romano, D., Raila, P., Pinzger, M., & Khomh, F.

(2012, October). Analyzing the impact of

antipatterns on change-proneness using fine-

grained source code changes. In 2012 19th

working conference on reverse engineering (pp.

437-446). IEEE.

39. Kaur, S., & Singh, S. (2015). Influence of anti-

patterns on software maintenance: A review.

International Journal of Computer Applications,

975, 8887.

40. Khomh, F., Penta, M. D., Guéhéneuc, Y. G., &

Antoniol, G. (2012). An exploratory study of the

impact of antipatterns on class change-and fault-

proneness. Empirical Software Engineering, 17,

243-275.

41. Liu, H., Ma, Z., Shao, W., & Niu, Z. (2011).

Schedule of bad smell detection and resolution: A

new way to save effort. IEEE transactions on

Software Engineering, 38(1), 220-235.

42. Maiga, A., Ali, N., Bhattacharya, N., Sabané, A.,

Guéhéneuc, Y. G., & Aimeur, E. (2012, October).

Smurf: A svm-based incremental anti-pattern

detection approach. In 2012 19th Working

Conference on Reverse Engineering (pp. 466-475).

IEEE.

43. Nongpong, K. (2012). Integrating" Code Smells"

Detection with refactoring tool support (Doctoral

dissertation, The University of Wisconsin-

Milwaukee).

44. Jaafar, F., Guéhéneuc, Y. G., & Hamel, S. (2014).

Analysing anti-patterns static relationships with

design patterns. Electronic Communications of the

EASST, 59.

45. Saberwal, H. K., Singh, S., & Kaur, S. (2013).

Empirical Analysis Of Open Source System For

Predicting Smelly Classes,‖ Inter. Journal of

Engineering Research & Technology, 2(3), 1-6.

46. Kaur, H., & Kaur, P. J. (2014). A study on

detection of anti-patterns in object-oriented

systems. International Journal of Computer

Applications, 93(5).

47. Pandiyavathi, T. (2014). Usage of optimal

restructuring plan in detection of code smells.

arXiv preprint arXiv:1407.1257.

48. Palma, F., Moha, N., & Guéhéneuc, Y. G. (2013,

September). Detection of process antipatterns: A

BPEL perspective. In 2013 17th IEEE

International Enterprise Distributed Object

Computing Conference Workshops (pp. 173-177).

IEEE.

49. Palma, F., An, L., Khomh, F., Moha, N., &

Guéhéneuc, Y. G. (2014, November).

Investigating the change-proneness of service

patterns and antipatterns. In 2014 IEEE 7th

International Conference on Service-Oriented

Computing and Applications (pp. 1-8). IEEE.

50. Singh, S., & Kahlon, K. S. (2014). Object oriented

software metrics threshold values at quantitative

acceptable risk level. CSI transactions on ICT, 2,

191-205.

51. Jiang, D., Ma, P., Su, X., & Wang, T. (2014).

Distance metric based divergent change bad smell

detection and refactoring scheme analysis.

International Journal of Innovative Computing,

Information and Control, 10(4), 1519-1531.

Cite This Article: Vadivel G, Er. Abhinash Singla, Er. Sanju Kumari (2021). Influence of Anti-Patterns Detection Techniques on

Software Maintenance. East African Scholars J Eng Comput Sci, 4(10), 166-172.

