Some Nephrotoxic Effects of Commonly Used Mosquito Repellents in Sokoto State, Nigeria

Khadijah, A.A.1, Gamde, S.M.*1, Hauwa, K.1, Perede, A.2, Musa, A.A.3, Aisha, A.3, Dansy, A.D.1 & Aminu, G2

1Hospital Services Management Board, Department of Medical Laboratory Services, Sokoto, Nigeria
2Sokoto Specialist Hospital, Medical Laboratory Services, Sokoto State, Nigeria
3Usman Danfodiyo University Teaching Hospital Sokoto, Department of Histopathology, Nigeria

Abstract: Mosquito repellents are used extensively in Nigeria to prevent mosquito and diseases associated with them. Most active constituents of repellents are well known for their toxicities. The purpose of this study was to determine the nephrotoxic effects of Rambo and Sharp mosquito repellents commonly used in Sokoto State, Nigeria. Exposure of 27 Wistar rats to Rambo and Sharp mosquito repellents for 5 min per day over a period of 21 days induced interstitial haemorrhage, glomerular and tubular degenerations. Glomerular damage is characterized by shrunken glomeruli and widening of bowman space. Sharp repellent containing 70% dichlorvos was the most injurious insecticide. Therefore, repeated exposures to mosquito repellents are deleterious to the kidney.

Keywords: Transfluthrin; Permethrin; Dichlorvos; Wistar rats; Kidney; Histopathology.

INTRODUCTION

Malaria is a major public health problem in Nigeria, accounting for more cases of infection and deaths than other countries worldwide. The extent of repeated exposure to different residual insecticides may contribute to the existing burden of malaria (Saidu et al., 2015). Natural pyrethrins and synthetic pyrethroids are the most common household insecticides used to repel or kill mosquito, and are well known for their toxicities on tissue organs (Moya-Quiles et al., 1995).

Among popular made in Nigeria products of mosquito repellents are the Rambo and Sharp mosquito repellents. Passagne et al. (2012) and Wardoyo et al. (2018) reported that chemical repellents caused pathological changes similar to cyanide and aldehyde. The Rambo repellent is composed of 0.25% transfluthrin and 0.20% permethrin, manufactured by Gongoni Company Limited Nigeria. Wardoyo et al. (2018) and Unggul et al. (2019) reported its transfluthrin content to induced acute tubular and glomerular necrosis in mice.

Sharp repellent is another made in Nigeria product, composed of 70% dichlorvos, manufactured by Onitsha Company Nigeria. Somia et al. (2012) and Tela et al. (2016) reported that dichlorvos induced tubular vascular degeneration and lumen dilatations in mice. Furthermore, Olatunde et al. (2014) reported glomerular congestion in dichlorvos induced morphological alteration in rats. Each of these insecticides targeted and elicits specific response on insect nerve cells in similar manner that their little mists exert the required effects (Miao et al., 2017).

Although, most repellent substances are metabolized in mammals, chronic exposure through inhalation, ingestion or dermal absorption could cause serious tissue damage (Mamuna et al., 2019). Human exposure is mainly through inhalation of household vaporizing units of repellents (WHO 1989). Repellent particles in the pulmonary lungs are carried via blood to the kidney for filtration. The kidneys function to produce urine from the body’s metabolic processes and it is the main path of toxic substances (toxins). Thus, the anatomy and physiology of the kidney are predisposed to numerous toxins (Unggul et al., 2019).

Despite multiple scientific reports on the toxicities of different individual mosquito preparations on the kidney, there is no current study on the

*Corresponding Author: Gamde, S.M
nephrotoxic effects of Rambo and Sharp mosquito repellents commonly used in Sokoto State, Nigeria. This study would increase our knowledge on transfluthrin, permethrin and dichlorvos on the structures and functions of the kidney.

MATERIALS AND METHODS

Experimental animals
A total of twenty seven (27) adult male and female Wistar rats, weighing 150-180 grams were used in the experiment. Animals were procured from the Animal House of Ahmadu Bello University Zaria, Kaduna State, Nigeria. Animals were kept in well ventilated room with optimum environmental conditions of temperature (22 ± 2°C) with 12 hours dark/light cycle. The animals were fed with standard pellets and tap water ad libitum and were allowed to aclimatize for two weeks before the experiment.

Experimental Design
We used 27 Wistar rats that were divided into three groups: a control group, a treatment group with Rambo and Sharp mosquito repellents. The control group was unexposed to repellents. The treatment groups were exposed to Rambo repellent composed of 0.25% transfluthrin and 0.20% permethrin, and to 70% dichlorvos constituents of Sharp repellent respectively. Animals were exposed in an enclosed chamber with dimension of 53.5 cm x 39.5 cm for 5 minutes in 21 days.

Tissue preparation

Statistical analysis
SPSS 23.0 version software was employed for this analysis. Data entry was done using Microsoft excel version 13 and Shapiro-Wilk test was used to verify the distribution of the obtained data. In order to assess if the data was parametric or nonparametric distribution, results were presented as mean and standard deviation (SD). Two-way analysis of variance (ANOVA) was conducted with Bonferroni adjustment way analysis of variance (ANOVA) was conducted with Bonferroni adjustment (Table 2, P≥0.05).

Relative Body Weight
There was no significant change in the body weight of experimental animals exposed to the different mosquito repellents compared to the normal control (Table 2, P≥0.05).

RESULTS

Morbidity and mortality
The exposure of animals to test mosquito repellents for 5 minutes per day over a period of 21 days did not cause mortality. However, animals showed behavioural signs of toxicity including irritations, ruffled fur appearance, lethargy.

Histopathological Result
The animals from treatment and control groups were sacrificed by the use of chloroform. The kidneys were excised and washed in no

<table>
<thead>
<tr>
<th>Mosquito repellents</th>
<th>Dose….. (5min/day)</th>
<th>Types…</th>
<th>Period of animal exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>---</td>
<td>---</td>
<td>3 rats 3 rats 3 rats</td>
</tr>
<tr>
<td>Rambo</td>
<td>0.45ml/w</td>
<td>Liquid</td>
<td>3 rats 3 rats 3 rats</td>
</tr>
<tr>
<td>Sharp</td>
<td>0.45ml/w</td>
<td>Liquid</td>
<td>3 rats 3 rats 3 rats</td>
</tr>
</tbody>
</table>

Table 1: A table showing the different mosquito repellents dose and duration of exposure with corresponding control (n=9)

Table 2: Body weights of animals at pre-and post-exposure to mosquito repellents (n=9)

<table>
<thead>
<tr>
<th>Durations of exposure</th>
<th>Normal control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-exposure</td>
<td>141.67±6.36</td>
</tr>
<tr>
<td>Post-exposure</td>
<td>158.67±12.1</td>
</tr>
<tr>
<td>14 days</td>
<td></td>
</tr>
<tr>
<td>Pre-exposure</td>
<td>138.00±15.5</td>
</tr>
<tr>
<td>Post-exposure</td>
<td>104.00±52.2</td>
</tr>
<tr>
<td>21 days</td>
<td></td>
</tr>
<tr>
<td>Pre-exposure</td>
<td>162.33±14.2</td>
</tr>
<tr>
<td>Post-exposure</td>
<td>119.33±59.6</td>
</tr>
</tbody>
</table>

© East African Scholars Publisher, Kenya
glomerular and tubular damage caused tissue necrosis (Fig.4,7).

Fig.1: Normal control of animals showed normocellular glomerular tufts (g) in a background of tubules (t) with cuboidal cell epithelial lining. (H&E. x 400).

Fig.2: Kidney exposed to Rambo mosquito repellent containing 0.25% transfluthrin and 0.20% permethrin for 7 days showed cortical haemorrhage (h) and congestion around bowman’s space (c). (H&E. x 100,400).

Fig.3: Kidney exposed to Sharp mosquito repellent containing 70% dichlorvos for 7 days showed cortical haemorrhage (h) and congestion around bowman’s space (c). (H&E. x 100,400).
Fig. 4: Kidney exposed to Rambo mosquito repellent containing 0.25% transfluthrin and 0.20% permethrin for 14 days showed hypercellularity (I) around congested blood vessel (vc), shrunken/degenerated glomeruli (g) with bridged renal tubules (t). (H&E. x 100,400).

Fig. 5: Kidney exposed to Sharp mosquito repellent containing 70% dichlorvos for 14 days showed congested blood vessel (vc), interstitial haemorrhage, and shrunken glomerulus (g). (H&E. x 100,400).

Fig. 6: Kidney exposed to Rambo mosquito repellent containing 0.25% transfluthrin and 0.20% permethrin for 21 days showed degenerated glomeruli (g), and interstitial haemorrhage (h). (H&E. x 100,400).
Fig.7: Kidney exposed to Sharp mosquito repellent containing 70% dichlorvos for 21 days showed congested blood vessel, interstitial haemorrhage (h), glomerular and tubular necrosis (f). (H&E. x 100,400).

DISCUSSION

We designed this study to evaluate the nephrotoxic effects of commonly used Rambo and Sharp mosquito repellents in Sokoto State, Nigeria. No mortality was recorded on 21 days exposure except irritations, ruffled fur appearance, and lethargy on Wistar rats. The studies of Naikanishi et al., 1970; Somia et al., 2013; Mamuna et al., 2019 reported similar toxicity as irritations, ruffled fur appearance, and lethargy in both experimental animals and humans exposed to mosquito repellents.

We observed that the body weight loss of animals exposed to repellents though not significant agrees with previous reports on insignificant weight change following inhalation of mosquito repellents (Table 2, \(P\geq0.05\)) (Schoenig 1995; Ishmael et al., 1998; Abubakar et al., 2007; Garba et al., 2007).

We observed that both Rambo and Sharp mosquito repellents manufactured in Nigeria, induced histopathological changes on kidney organs. The kidney cell damage was demonstrated in the glomeruli and tubules (Fig.2,3,4,5,6,7). The shrunken glomerular (g) and fibrotic tubules indicated structural damage known as the glomeruli and tubular damage. The glomerular damage was characterized by widening of Bowman space due to shrunken glomeruli (Fig.4,5,6,7). The tubular damage is characterized by narrowing of the tubular lumen. Glomerular and tubular damage unabated progressed to tissue necrosis or cell death (Fig.4,6), a pathological condition called Acute Tubular Necrosis (ATN). Sarkar et al. (2011); Momeni et al. (2017) and Unggul et al. (2019) reports corroborated our finding on nephrotoxic ATN caused by toxic repellent substances in cells. Somia et al. (2012) and Tela et al. (2016) reported similar toxic effects of dichlorvos on kidney. Furthermore, Taiwo et al. (2008) and Emmanuel et al. (2013) reported glomerular and tubular degeneration, necrosis, and vasculitis to mosquito fumes in experimental rats. Garba et al. (2007) and Mamuna et al. (2019) reported multifocal congestion, cystic dilation in the medulla and tissue necrosis similar to our finding. The volatile organic substances of repellents with free radicals induced significant tissue damage (John and John 2015).

Our finding indicates deleterious health consequences of mosquito repellents on human kidney in case of long time exposure. Hence, standard regulations need to be popularized among users, especially those in rural areas by educating the general masses health implications of frequent exposure to mosquito repellents and manufacturers to specify the ingredients used with scientific references regarding its safety and duration of use.

CONCLUSION

The results of the research showed damaged kidney organs to Rambo and Sharp repellents exposure. The transfluthrin, permethrin and dichlorvos in Rambo and Sharp repellents induced renal damage. Sharp repellent with 70% dichlorvos induced more severe damage to the kidney. However, more dosage of active constituents could cause more damage to organs.

Conflict of Interest: None

REFERENCES