Nigella Sativa and Its Role in the Immune System – A Review

Dn. Sarah Khawar*

The University of Lahore, Wapda Town, Lahore, Pakistan

Abstract: Nigella sativa (black cumin), a small shrub native to Western Asia, Middle East and Eastern Europe, has been used for centuries for cooking as well as home remedies for various ailments. Its miraculous beneficial properties has made it to be of key interest in the modern medicine. Its use has been extensively studied for medicinal purposes owing to the fact that it has little to no side effects. With a wide range of uses in multiple fields, its role in strengthening the body’s immunity has emerged to be of significant value. Owing to its antioxidant, anti-inflammatory and antimicrobial properties, nigella sativa and its most active component thymoquinone has been studied in countless researches to be proven as a potent antioxidant, anti-inflammatory and antimicrobial agent.

Keywords: immunity, antioxidant, anti-inflammatory, antimicrobial, black cumin, thymoquinone.

INTRODUCTION

The use of therapeutic herbs for the treatment of various ailments can be dated back to the early times. Their use in home remedies is well practiced. (Beheshti, Khazaei, & Hosseini, 2016) In the pharmacology world, they are being extensively studied for their benefits due to their added bonus of having fewer side effects. (Aisa, Xin, & Tang, 2019)

Nigella Sativa (NS) is an example of such a medicinal herb. Belonging to the family of Ranunculaceae, it mainly grows in the Western Asia, Middle East and Eastern Europe. (Shabana, El-Menyar, Asim, Al-Azzeh, & Al Thani, 2013) It is known by various names including black caraway, black cumin, black seed or black sesame in English; Habatul-barakah (seed of blessing) in Arabic; jintanhitam in Indonesian; kalonji in Urdu; Kaljeera in Hindi and çörek out in Turkish language. (Mollazadeh, Afshari, & Hosseinzadeh, 2017)(Datta et al., 2012) It is a small shrub that grows up to 20-90 cm in length with five to ten petals. The petals are mostly light purple, blue, pink, yellow or white color. (Beheshti et al., 2016) The fruits contains tiny black seeds which are the main source of various nutrients contributing to the plants therapeutic power. (Eid, Elmarzugi, Abu Ayyash, Sawafata, & Daana, 2017) It has great significance in the Islamic religion (Beheshi et al., 2016) Islamic Prophet Muhammad (P.B.U.H.) stated the black seed to have powers to heal any ailment except death. (Amin & Hosseinzadeh, 2016)

NS has been used in folk medicine for a wide range of ailments. With regard to its impressive healing ability, extensive researches are carried out to study its role in various pharmacological aspects. Based on its notable effects, it has been identified as the top evidence based therapeutic herb. (Ahmad et al., 2013)

USES

Black cumin is widely used in the Middle Eastern cuisine owing to its characteristic aroma and bitter taste as a spice in various dishes including curry, lentils and vegetables and flavor additive in pickles and bread. Its use has also been accounted in the ancient Egyptian times as a preservative during mummification. (Srimivasan, 2018)

NS has uses in pharmacological medicine and home remedies as well as cooking. (Kooti, Hasanzadeh-Noohi, Sharafi-Ahvazi, Asadi-Samani, & Ashhtary-Larky, 2016) Quite famous in Middle East due to its religious importance, the use of black cumin goes back for more than 2000 years. The seeds have been used to treat many conditions including eczema, flu, fever, cough, asthma, anorexia, amenorrhea hemorrhage hypertension, diabetes rheumatism, dyspepsia, conjunctivitis, jaundice, skin diseases, (Forouzanfar, 2016)
Bazzaz, & Hosseinzadeh, 2014) diarrhea, nasal ulcers, swollen joints, flatulence, dyspepsia, back pain, paralysis, obesity, congestion dizziness and migraines. (Datta et al., 2012)

In the pharmacological world, its use has been widely studied with black cumin being recognized as having therapeutic effect on endocrine, immune, respiratory and cardiovascular system. (Gharby et al., 2015) It has been acknowledged as having antitumor, antifungal, antibacterial, antimarial, insecticidal, diuretic and antiseptic effect. (Hadi, Mohammed, & Hameed, 2016) Most of the medicinal effect has been ascribed to be due to the presence of thymoquinone, a

Composition

The seed of Nigella Sativa contains both fixed as well as volatile oil. Other than this it also contains saponins, alkaloids and proteins and other nutrients. (Piras et al., 2013) Studies show the seed to consist of thirty two volatile terpenes and 8 fatty acids. Thymoquinone has been isolated as the prime active component of black cumin. (Khan & Afzal, 2016) Some of the major constituents of black cumin are shown in table below.

Table – 1 (Amin & Hosseinzadeh, 2016; Ijaz et al., 2017; Srinivasan, 2018; Tembhurne, Feroz, More, & Sakarkar, 2014; Vatansev et al., 2013)

Role in Immunity

For the protection of the human body against foreign attacks, there are a set of specific cells and organs collectively known as the immune system. To maintain the body’s homeostasis, it is essential that the immune system is functioning properly. (Sultan, Buttxs, Qayyum, & Suleria, 2014) The components of NS play a vital role in this. (Gheita & Kenawy, 2012)

NS has been reported to support the immune system in variety of ways. Studies show its potent activity as an antifungal, antibacterial, respiratory stimulation, anti diabetic, antihypertensive, analgesic, anti-inflammatory and antitumor. (Abdel-Moneim, Morsy, Mahmoud, Abo-Seif, & Zanaty, 2013) Studies show that thymoquinone obtained from NS can be used for its therapeutic effect through the regulation of immune system in combating a range of non-infectious and infectious disorders such as cancer, autoimmune disorders or allergies. (Majdalawieh & Fayyad, 2015)

Thymoquinone, a major component of NS, plays a role as in strengthening the body’s immune response, is a potent antioxidant, controls the Akt pathway and prompts apoptosis. Moreover, studies also prove it to be effective in healing allergic conditions including allergic rhinitis, eczema and asthma. (Tavakkoli, Mahdian, Razavi, & Hosseinzadeh, 2017)

Antioxidant

For energy production, oxygen is a vital compound required by all organisms. During the process of oxygen metabolism, minute amounts of free radicals or reactive oxygen species (ROS) are released, which when accumulated, damage body cells. Antioxidants are compounds that prevent this damage by inhibiting or delaying the action of free radicals. They can be either made by the body or obtained through diet. Evidence shows NS to have potent antioxidants present in its seed extract. (A. Mohammed & Al-Suwaiegh, 2016) Its antioxidant effect has been suggested to be by the scavenging of free radicals as well as increasing the antioxidant production of the body by raising the transcription gene responsible. (Goyal et al., 2017) Further studies indicate the existence of thymoquinone in NS to be responsible for
its antioxidant activities. (Kapil, Suresh, & Chandna, 2015) Its effectiveness as a potent antioxidant maybe due to its quinine structure enabling it to cross morphological barriers thereby obtaining access within the cellular structure and carrying out its scavenging action on the free radicals. (Alenzi et al., 2013)

Antiiinflammatory
Numerous study indicate the anti-inflammatory action of black cumin through inhibition of cyclo-oxygenase and 5-lipoxygenase pathway involved inarachidonate metabolism with regard to lipid peroxidation. It also induces the inhibition of eicosanoids and cytokines that play key role in inflammatory response. Furthermore, its immunity strengthening effects are also attributed to its natural killer (NK) and T-cell mediated response. (Ijaz et al., 2017) In addition to this it has also been seen to inhibit inflammation mediators, prostaglandins, leukotrienes and B-cell mediated immune response. (Gholamnezhad, Keyhamanesh, & Boskabady, 2015)

Antimicrobial
Evidence shows that NS possesses anti-parasitic, antiviral and antimicrobial activity. Their antibacterial action was seen against multiple species of Gram positive and Gram negative bacteria. (A. Mohammed & Al-Suwaiegh, 2016) Studies show that NS can stimulate antiviral activities attributed to increased T-cell response. (Alenzi et al., 2013)Investigation show that NS extracts employ inhibition actions against variety of infections due to bacteria. Moreover, it was seen that even in the lack of any disease, NS proved as an immune modulator by strengthening the activity of NK-cell as well as improving the function of T-cell. (Ishtiaq, Ashraf, Hayat, & Asrar, 2013).

REVIEW LITERATURE
A study was conducted to study the antimicrobial actions of NS seeds. The extract obtained from the seeds was analyzed using agar well diffusion method against different microorganisms. Results showed that the presence of thymoquinone, thymohydroquinone, longiforene and p-cymene exhibited potent antimicrobial action against the bacteria including P. aeruginosa, E.coli, S. epidermis, S. aureus, B. subtilis and B. cereus. (Singh et al., 2014)

Chaudhary et al., conducted a study to analyze the antibacterial and antioxidant effect of NS against Gram negative and Gram positive by suspension extracts. The results showed increased antioxidant and enzyme activity with regard to increased thymoquinone and thymol content. With the presence of phytochemical constituents, strong antibacterial activity was also seen against the bacteria present. (Chaudhry, Fatima, & Ahmad, 2015)

A study was carried out to investigate the antifungal action of NS extracts especially its active component, thymoquinone against Microsporum gypseum, Microsporum canis and Trichophyton mentagrophytes. Disk diffusion methods was used to study the antifungal action. Results showed that the extract, especially thymoquinone, exhibited strong antifungal action against the given strains. (Mahmoudvand, Sepahvand, Jahanbakhsh, Eztapour, & Mousavi, 2014)

A study conducted by Goga et al., studied the antioxidant effect of NS seed extracts using the ultrasound and Soxhlet extraction methods. ABTS test and DPPH method was used to analyze the radical scavenging activity. Results showed potent antioxidant effect with thymoquinone and ethanolic extract being the most prominent. (Goga, Hasic, Becirovic, & Cavar, 2012)

Research was done to analyze the antioxidant, antimicrobial and anti-inflammatory activity of NS extract. Results showed thymoquinone to be the strongest antioxidant and anti-inflammatory agent. It proved to be most active in decreasing oxidation. The extract proved to be very effective against bacteria especially E.coli and Candida albicans. (Kazemi, 2014)

An investigation was carried out to examine the antibacterial and antioxidant action of NS’s component - thymoquinone. By the well diffusion method, the antibacterial action was studied against Salmonella typhi, Staphylococcus and E. coli strains. Results showed potent antioxidant effect as well as antimicrobial action proving thymoquinone to be therapeutic. (Nallamuthu, Parthasarathi, & Khanum, 2013)

Bordoni et al. conducted a study with the aim to investigate the antioxidant activity of NS extract containing thymoquinone. It was seen that NS oil containing high levels of thymoquinone exhibited strong antioxidant activity. (Bordoni et al., 2019)

A study was carried out to examine the antioxidant property of black cumin and garlic extract on postmenopausal women. The consumed the required amount of black cumin and garlic extract for eight weeks. Increased superoxide dismutase erythrocyte glutathione peroxidase activity with decreased levels of glutathione peroxidase was seen. (Mostafa, Moustafa, Mirghani, AlKusayer, & Moustafa, 2013)

The purpose of an investigation was to study the antioxidant and anti-inflammatory effect of NS’s thymoquinone on human lung cancer cell. For three days, the cells were exposed to different thymoquinone concentrations. It was seen that thymoquinone enhanced apoptotic cell death in the tumor cell. It was also seen that p53 expression that is another apoptotic

© East African Scholars Publisher, Kenya
modulator in the cancer cell was upregulated by thymoquinone. By the activation of caspase-9 and -3, thymoquinone also caspase dependent apoptosis. It was concluded that thymoquinone possesses therapeutic properties in combating lung cancer. (Samarghandian, Azimi-Nezhad, & Farkhondeh, 2019)

A study was carried out by Ramadan et al. to analyze the antimicrobial activity of black cumin extract. The results showed black cumin extract exhibited potent antimicrobial effect against all microorganisms except A. flavus and A. niger. (Ramadan, Asker, & Tadros, 2012)

Research was done to analyze the antibacterial effect of black seed oil against wide range of bacteria. Results showed that black seed oil inhibited the growth of all bacteria particularly Bacillus subtilis. It was also seen the main agent responsible for the black seed oil’s antimicrobial actions were due to the presence of thymoquinone. Strong antibacterial effect of black seed oil was concluded even to be effective against MRSA. (S. J. Mohammed et al., 2019)

A study was conducted to examine thymoquinone and its antioxidant activity and its effectiveness in reducing free radicals. Free radical scavenging methods were used. Results showed thymoquinone to be a strong antioxidant. It inhibited the peroxidation of beta-carotene. It was seen to be a potent lipid peroxidation, hydroxyl scavenger and hydrogen peroxide inhibitor. (Khither, Sobhi, Khenchouche, Mosbah, & Benboubetra, 2018)

In 2015, a study was carried out by Hussein to investigate NS extract as an antibacterial (E. coli and Staph. Aureus) and antifungal (A.niger). To study the inhibition of bacterial growth, inhibition zone plate method was used while fungal activity was studied through radial growth and mycelia weight were used. Strong antimicrobial action was seen against both bacteria particularly E.coli. Moreover, a decrease in fungus was identified with increase in NS extract concentrations. (Hussein, 2015)

A study was carried out by Georgescu et al. with the purpose to examine the antimicrobial effect of NS seed extract on traditional cheese in the absence of any additives. 3 sets were made with varying concentration of the extract, one being a control set. Results showed the inhibition of bacterial growth in the presence of the extract without any alteration in the physiochemical structure of the product. It was concluded that NS seed extract can successfully be used as an antibiotic in supplements. (Georgescu et al., 2018)

In a study aimed at analyzing the antimicrobial action of NS, its extract was obtained and its effect against Bacillus subtilis, Staphylococcus aureus and E.coli was studied. Agar well diffusion method and agar disk method was applied. Results showed inhibition in the growth of all three bacteria owing to the presence of strong phytochemical agents in NS. It was concluded that the extract of NS can be widely used in preservative and preservative medicine composition. (Foroughi et al., 2016)

CONCLUSION

Evidence obtained from countless researches prove nigella sativa to be a very effective component in strengthening the body’s immune system. Its active components, especially thymoquinone, play a vital role as an antioxidant, anti-inflammatory and antimicrobial activities. Further research is recommended to further identify, examine and study the phytochemical properties of nigella sativa and its seed in combating various illnesses in an effort for it become a vital part of the pharmacological world.

Conflict Of Interest

There was no conflict of interest.

Acknowledgements

None

REFERENCES

