

Original Research Article

Impact of Hypothyroidism on Estimated Glomerular Filtration Rate among Adults in North-Eastern Nigeria

Hadiru GM^{1*}, Aisha S.K¹, Goni Mustafa Atiku², Musa A.H³, Dungus M.M⁴, Loskurima U⁵, Mustapha Lawan⁶, Hassan A.A⁶, Dalili M.S⁷, Mshelia DS⁸

¹Department of Chemical Pathology University of Maiduguri Teaching Hospital, Maiduguri, Borno State

²Department of Haematology and Blood Transfusion, Federal University of Health Sciences, Azare, Bauchi State

³Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, University of Maiduguri, Borno State

⁴Department of Chemical Pathology University of Maiduguri Teaching Hospital, Maiduguri, Borno State

⁵Department of Internal Medicine Kashim Ibrahim University, Maiduguri, Borno State

⁶Department of Internal Medicine University of Maiduguri Teaching Hospital, Maiduguri, Borno State

⁷Department of Chemical Pathology, Faculty of Basic Clinical Sciences, Adamu Modibbo University of Yola, Adamawa State, Nigeria

⁸Department of Chemical Pathology, Faculty of Basic Clinical Sciences, University of Maiduguri, Borno State, Nigeria

Article History

Received: 14.12.2025

Accepted: 09.02.2026

Published: 12.02.2026

Journal homepage:

<https://www.easpublisher.com>

Quick Response Code

Abstract: **Background:** Hypothyroidism has well-documented systemic effects, including alterations in renal hemodynamics and metabolism. These changes may lead to a reduction in estimated glomerular filtration rate (eGFR), potentially mimicking chronic kidney disease. Evidence from North-Eastern Nigeria remains limited. **Objective:** To assess the impact of hypothyroidism on estimated glomerular filtration rate among adults in North-Eastern Nigeria. **Methods:** This hospital-based cross-sectional comparative study included 150 adults comprising 75 patients with hypothyroidism and 75 euthyroid controls. Serum creatinine, thyroid-stimulating hormone (TSH), and free thyroxine (FT4) were measured. Estimated GFR was calculated using the CKD-EPI creatinine equation. Data were analyzed using independent t-tests, Pearson correlation, and multivariable linear regression. **Results:** Mean eGFR was significantly lower in hypothyroid participants compared with euthyroid controls (74.9 ± 21.6 vs. 94.3 ± 18.9 mL/min/1.73 m²; $p < 0.001$). Serum TSH showed a significant inverse correlation with eGFR ($r = -0.45$, $p < 0.001$). Hypothyroidism remained an independent predictor of reduced eGFR after adjusting for age, sex, and body mass index. **Conclusion:** Hypothyroidism is associated with significantly reduced estimated GFR among adults in North-Eastern Nigeria. Thyroid function testing should be considered in patients with unexplained reduction in eGFR to avoid misclassification of chronic kidney disease.

Keywords: Hypothyroidism, Estimated Glomerular Filtration Rate, Renal Function, Thyroid Hormones, Nigeria.

Copyright © 2026 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Hypothyroidism is a common endocrine disorder characterized by insufficient production of thyroid hormones, resulting in generalized metabolic slowing and multisystem involvement [1, 2]. The prevalence of thyroid disorders in Nigeria varies by region and is influenced by iodine intake, autoimmune disease, and access to healthcare services.

The kidney is both a target organ and a regulator of thyroid hormone metabolism. Thyroid hormones play a critical role in maintaining renal blood flow,

glomerular filtration, and tubular transport functions [3]. In hypothyroidism, reduced cardiac output and increased systemic vascular resistance may impair renal perfusion, leading to a decline in glomerular filtration rate (GFR) [4, 5].

Estimated GFR (eGFR), commonly derived from serum creatinine-based equations, is widely used for routine assessment of kidney function. However, hypothyroidism alters creatinine generation and clearance due to reduced muscle metabolism and tubular secretion, potentially resulting in underestimation of true renal function [6, 7]. Importantly, renal impairment

*Corresponding Author: Dr. Hadiru Goni Mustapha

Department of Chemical Pathology University of Maiduguri Teaching Hospital, Maiduguri, Borno State

associated with hypothyroidism is often reversible following thyroid hormone replacement therapy [8].

Despite increasing recognition of the thyroid-kidney interaction, there is a paucity of data evaluating the effect of hypothyroidism on eGFR in North-Eastern Nigeria. This study aimed to assess the impact of hypothyroidism on estimated glomerular filtration rate among adults in this region.

MATERIALS AND METHODS

Study Design and Setting

This was a hospital-based cross-sectional comparative study conducted at a tertiary health facility in North-Eastern Nigeria.

Study Population

A total of 150 adults aged 18 years and above were recruited. The study group consisted of 75 patients with hypothyroidism, while 75 age- and sex-matched euthyroid individuals served as controls.

Definitions

An underactive thyroid, or hypothyroidism, occurs when the thyroid gland creates less than the normal amount of thyroid hormone. The result is the weakening of many bodily functions. Euthyroid status was defined by normal TSH and FT4 levels.

Exclusion Criteria

Participants with known chronic kidney disease, diabetes mellitus, hypertension, pregnancy,

acute illness, or use of nephrotoxic medications were excluded.

Data Collection

Sociodemographic data and clinical history were obtained using a structured questionnaire. Weight and height were measured, and body mass index (BMI) was calculated.

Laboratory Analysis

Venous blood samples were collected after an overnight fast. Serum creatinine was measured using an enzymatic method standardized to isotope-dilution mass spectrometry. TSH and FT4 were measured using enzyme linked immunoassays.

Estimation of GFR

Estimated GFR was calculated using the CKD-EPI creatinine equation [10].

Statistical Analysis

Data analysis was performed using SPSS version 25. Continuous variables were expressed as mean \pm standard deviation. Independent t-tests were used to compare means between groups. Pearson correlation assessed the relationship between TSH and eGFR. Multivariable linear regression was used to identify independent predictors of reduced eGFR. Statistical significance was set at $p < 0.05$.

RESULTS

Table 1: Sociodemographic and Clinical Characteristics of Participants

Variable	Hypothyroid (n = 75)	Euthyroid (n = 75)	p-value
Age (years)	42.8 \pm 11.4	40.9 \pm 12.0	0.32
Female (%)	69.3	65.3	0.60
BMI (kg/m ²)	28.0 \pm 5.3	26.2 \pm 4.8	0.03
TSH (mIU/L)	18.9 \pm 7.6	2.3 \pm 0.9	<0.001
FT4 (pmol/L)	7.9 \pm 2.2	15.4 \pm 3.5	<0.001

Table 2: Renal Function Parameters

Parameter	Hypothyroid	Euthyroid	p-value
Serum creatinine (mg/dL)	1.14 \pm 0.32	0.93 \pm 0.21	<0.001
eGFR (mL/min/1.73 m ²)	74.9 \pm 21.6	94.3 \pm 18.9	<0.001

Correlation Analysis

Serum TSH showed a significant inverse correlation with eGFR ($r = -0.45$, $p < 0.001$).

DISCUSSION

This study demonstrates that hypothyroidism is associated with significantly reduced estimated glomerular filtration rate among adults in North-Eastern Nigeria. Participants with hypothyroidism had markedly lower eGFR values compared with euthyroid controls, independent of age, sex, and BMI.

The observed inverse relationship between TSH and eGFR suggests a severity-dependent effect of thyroid hormone deficiency on renal function. Reduced renal blood flow, diminished cardiac output, and altered intrarenal hemodynamics are recognized mechanisms contributing to reduced GFR in hypothyroidism [11-13].

These findings are consistent with earlier studies reporting reversible elevations in serum creatinine and reductions in GFR among hypothyroid patients [14-17]. Failure to recognize hypothyroidism as a cause of reduced eGFR may lead to misdiagnosis of

chronic kidney disease and unnecessary investigations, particularly in resource-limited settings [18].

CONCLUSION

Hypothyroidism is significantly associated with reduced estimated glomerular filtration rate among adults in North-Eastern Nigeria. Evaluation of thyroid function should be incorporated into the assessment of patients with unexplained reduction in eGFR to avoid misclassification of chronic kidney disease.

REFERENCES

1. Vanderpump MPJ. The epidemiology of thyroid disease. *Br Med Bull*. 2011;99(1):39–51.
2. Okosieme OE, Taylor PN, Evans C, et al. Thyroid disorders in sub-Saharan Africa. *Lancet Diabetes Endocrinol*. 2016;4(5):447–456.
3. Katz AI, Lindheimer MD. Actions of thyroid hormone on the kidney. *Kidney Int*. 1975;8(5):346–365.
4. Iglesias P, Díez JJ. Thyroid dysfunction and kidney disease. *Eur J Endocrinol*. 2009;160(4):503–515.
5. Montenegro J, González O, Saracho R, et al. Changes in renal function in primary hypothyroidism. *Am J Kidney Dis*. 1996;27(2):195–198.
6. Kreisman SH, Hennessey JV. Reversible elevation of serum creatinine in hypothyroidism. *Arch Intern Med*. 1999;159(1):79–82.
7. den Hollander JG, Wulkan RW, Mantel MJ, Berghout A. Correlation between thyroid dysfunction and renal function. *Clin Endocrinol (Oxf)*. 2005;62(4):423–427.
8. Mariani LH, Berns JS. Renal manifestations of thyroid disease. *J Am Soc Nephrol*. 2012;23(1):22–26.
9. Karanikas G, Schütz M, Szabo M, et al. Renal function in severe hypothyroidism. *Eur J Nucl Med Mol Imaging*. 2004;31(8):1149–1154.
10. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate GFR. *Ann Intern Med*. 2009;150(9):604–612.
11. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function. *N Engl J Med*. 2006;354(23):2473–2483.
12. Inker LA, Schmid CH, Tighiouart H, et al. Estimating GFR from creatinine and cystatin C. *N Engl J Med*. 2012;367(1):20–29.
13. Chonchol M, Lippi G, Salvagno G, et al. Subclinical hypothyroidism and CKD. *Clin J Am Soc Nephrol*. 2008;3(5):1296–1300.
14. Sun GE, Pantalone KM, Hatipoglu B. Hypothyroidism and renal function. *Endocr Pract*. 2015;21(2):197–203.
15. Pearce SHS, Brabant G, Duntas LH, et al. Management of subclinical hypothyroidism. *Eur Thyroid J*. 2013;2(4):215–228.
16. Danzi S, Klein I. Thyroid disease and the cardiovascular system. *Endocrinol Metab Clin North Am*. 2014;43(2):517–528.
17. Rhee CM, Brent GA, Kovesdy CP, et al. Thyroid disease in CKD. *Nephrol Dial Transplant*. 2015;30(5):724–737.
18. Delanaye P, Cavalier E, Radermecker RP, Krzesinski JM. GFR estimation in thyroid disease. *Clin Chem Lab Med*. 2010;48(5):701–706.

Cite This Article: Hadiru GM, Aisha S.K, Goni Mustafa Atiku, Musa A.H, Dungus M.M, Loskurima U, Mustapha Lawan, Hassan A.A, Dalili M.S, Mshelia DS (2026). Impact of Hypothyroidism on Estimated Glomerular Filtration Rate among Adults in North-Eastern Nigeria. *EAS J Radiol Imaging Technol*, 8(1), 10-12.
