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Abstract: The objective of this abstract is to offer an overview of the significance
of using computational models in the process of developing anticancer drugs that
are derived from fruits and vegetables. This is a branch of research that integrates
traditional medical knowledge with modern approaches that are used in the process
of medication creation. By using computational methods such as molecular
docking, quantitative structure-activity relationship (QSAR) studies, and molecular
dynamics simulations, it may be possible to get a better understanding of the
complex interactions that take place between compounds originating from plants
and cancer targets. The process of discovering potential anticancer medications is
sped up by these models, which also provide an efficient path for lead optimization.
Specifically, they do this by conducting a rigorous investigation of the chemical
landscape of a broad range of plant compounds. Both the relevance of
computational tools in the process of expediting drug discovery and the potential
of plant-based medicines as a rich source of new and targeted anticancer
medications are brought to light by this integrated approach. Not only does it
emphasize the value of computational tools, but it also illustrates the promise of
plant-based medicines.

Keywords: Computer-aided drug design, Drug design, QSAR, Anti-cancer, Drug
discovery.
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INTRODUCTION
Since cancer continues to

datasets of compounds originating from plants. The

N rimary objective is to identify and prioritize molecules
be a significant P y o0 fy P

obstacle in terms of global health, it is imperative that
novel techniques be taken in order to create anticancer
drugs that are successful. The conventional methods of
drug development need a significant amount of time and
resources that are spent. When seen in this light,
computer models have emerged as extremely useful tools
for identifying and optimizing possible medication
candidates.

The purpose of the research topic or objective
known as "Computational Models Generation for
Designing of Plant-Based Anticancer Agents" is to
examine and execute computational approaches with the
intention of systematically designing and identifying
possible anticancer drugs that are derived from plant
chemicals. To be more specific, the purpose of the study
is to make use of sophisticated computational models,
such as molecular docking and machine learning
techniques, in order to conduct an analysis of huge

that possess substantial anticancer capabilities, with the
end goal of simplifying the process of drug discovery.
Ultimately, the purpose of this research is to contribute
to the creation of novel and effective anticancer
medicines that are derived from plant-based natural
products. This research aims to address the obstacles that
are associated with traditional drug discovery methods
by harnessing the power of computational
methodologies.

In order to reduce the amount of time needed for
innovative drug candidate discovery, characterization,
and structural optimization, computer-aided drug design,
or CADD, is a highly helpful tool in rational drug design
[1-5]. Rational medication design may also benefit from
the use of CADD. Prodrugs are often made to improve
the parent drug molecules' bioavailability or selectivity
[6-8]. The study of molecules that interact with the
biological target of interest is the indirect means via
which ligand-based drug design aims to promote the
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production of pharmacologically active drugs [9]. On the
other hand, structure-based drug design techniques
directly discover or optimize therapeutic candidates
based on their understanding of the target molecule's
three-dimensional structure [10-12].

Selecting a good target molecule linked to a
disease is the first step in any drug creation process. A
prospective therapeutic target is often a major protein in
a biochemical pathway connected to the disease state
[13-15]. Lead chemicals are substances that are either
intended to stimulate or inhibit a particular biochemical
pathway based on the nature of the illness condition [16-
17], [1819]. Optimizing the lead compounds to
maximize the interaction with the target molecule is the
next phase in the drug development process. CADD may
be very helpful in directing the lead optimization
procedure.

BASICS OF QSAR

The QSAR method and pharmacophore
modeling are the most widely used techniques for
ligandbased drug design. A computer tool called QSAR
quantifies the link between a series of chemicals'
chemical structures and a chemical or biological process.
The QSAR idea is that identical structural or
physiochemical features produce similar activity [20-
21]. First, a set of chemical entities or lead molecules
with the necessary biological activity is found. A
quantifiable association exists between active molecule
physico-chemical properties and biological activity. The
QSAR model optimizes active chemicals for biological
activity. The anticipated chemicals are then
experimentally tested for activity. Thus, QSAR may help
identify chemical changes with better activity.

The general methodology of QSAR is built
upon a series of consecutive steps (Fig. 1):

active ligands

[ Identification of ]

J

Identification of
suitable descriptors

U

Establish mathematical
expression relating
descripntors to activitv

J

Construction and
validation of the QSAR

model

Figure 1. Typical workflow of QSAR methods

e Identify ligands with experimentally measured values of the desired biological activity. Ideally these ligands are of a
congeneric series but should be of adequate chemically diversity to have a large variation in activity.

e Identify and determine molecular descriptors associated with various structural and physicochemical properties of
the molecules under study.

e Discover correlations between molecular descriptors and the biological activity that can explain the variation in
activity in the data set.

e  Test the statistical stability and predictive power of the QSAR model.

Ligand Based Drug Design

Ligand-based drug design is a method that is
used when there is a lack of information on the
threedimensional structure of the receptor. This method
is dependent on the knowledge of compounds that bind
to the biological target of interest. Within the realm of
ligand-based drug design, the most significant and
extensively used methods are pharmacophore modeling
and three-dimensional quantitative structure activity

relationships, often known as 3D QSAR. In addition,
they are able to provide predictive models that are
appropriate for lead identification and optimization [22].
Additional information on these methodologies and their
application to the design and development of 5-LOX
inhibitors is offered in a different section of the study.

3D QSAR
As the name implies, the 3D QSAR approach

uses descriptors to characterize a molecule's
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threedimensional properties in order to create a QSAR
model. The three-dimensional features of the ligands in
the three-dimensional QSAR approach may be described
by a range of geometric, physical, and quantum chemical
descriptors. Following that, a pharmacophore that
explains the biological action of the ligands is created by
combining these  molecular  descriptors.  The
threedimensional spatial orientation of different
properties, such acceptors or donors of hydrogen bonds,
that are necessary for the intended biological activity is
known as a pharmacophore [23-24]. To create the final
3D QSAR model, the produced pharmacophore model is
evaluated for statistical significance and stability. A
number of review publications are already available that
go into great detail about several 3D QSAR modeling
methodologies [25-35]. The main 3D QSAR methods
that are presently being used for drug design will be
briefly described in the section that follows in order to
prevent duplication. The CSP-SAR approach developed
in our laboratory and its applications will be thoroughly
explained in the closing part.

CoMFA

One of the most popular 3D QSAR approaches
is COMFA [36]. CoMFA was the first QSAR approach
to link molecule biological activity to 3D shape-
dependent steric and electrostatic characteristics. The
molecules’ 3D structures are aligned on a 3D grid, and
steric and electrostatic potential energies are determined
at each grid point. COMFA usually assumes the bioactive
conformer is the minimal energy conformer. For systems
with known crystal structures, crystal coordinates may
determine bioactive conformers. Field values for
potential energy terms are determined at each grid point
for each molecule and associated with biological activity.
CoMFA models are developed using PCA or PLS. We
next evaluate the CoMFA model for statistical
significance and robustness. Aligning bioactive
conformers is crucial to CoOMFA model performance and
prediction [37-40]. The bioactive conformation is not
always the lowest energy conformation in the absence of
the receptor [41-43], hence CoMFA's selection of
bioactive conformers and alignment approach may give
incorrect models. CoMFA's application is limited by
ignoring ligand dynamics. The energy function of
CoMFA does not explicitly account for hydrophobicity
or hydrogen bond interactions [44-46]. CoMFA
calculates steric and electrostatic interaction using
Lennard-Jones and Coulombic potential functions,
which might result in unreasonably large energy terms
owing to their hyperbolic natures. To prevent such
behavior, COMFA assigns an arbitrary cutoff value for
these potential functions [47-48].

CoMSIA

Similar to CoMFA, Comparative Molecular
Similarity Indices (CoMSIA) [49] is a 3D QSAR
method. Nevertheless, in addition to steric and
coulombic contributions, the molecular field expression
of CoMSIA also contains hydrophobic, hydrogen-bond

donor and acceptor components, unlike CoMFA. By
comparing each ligand molecule with a common probe
that has a radius of 1A and charge, hydrophobicity, and
hydrogen bond characteristics equal to 1, CoMSIA also
computes the similarity indices rather than contact
energies [50]. CoMSIA describes the steric, electrostatic,
and hydrophobic components of the energy function
using a bell-shaped Gaussian function. This enables
CoMSIA to avoid using an arbitrary cutoff value for the
energy computations, in contrast to COMFA. The ligand-
protein binding relationship is described by similarity
indices that correlate to CoMSIA molecular fields [51].

Catalyst

3D QSAR's conformational flexibility has been
taken into account. One well-known 3D QSAR
application, CATALYST [52], uses conformational
variation to build models. Using the poling approach,
CATALYST samples the conformational space of
ligands [53]. At a predetermined threshold of 20
kcal/mol above the global minimum conformation, this
process yields 250 conformers. Functional group spatial
orientations are used to create the pharmacophore
hypothesis, and estimated and observed activity levels
are used to assess QSAR models. The primary functional
categories or pharmacophoric attributes are:
Hydrogen-bond acceptor
Hydrogen-bond donor
Positively charges group (basic)
Negatively charged group (acidic)
Aromatic ring
Aliphatic hydrophobic moieties
Aromatic hydrophobic moieties

NogaMwdhE

Pharmacophore production involves
constructive and subtractive steps. A pharmacophore
hypothesis is built using molecules with activity above a
threshold value during the constructive phase. Any
pharmacophore that fits more than half of the inactive
compounds is excluded in the subtractive phase. Based
on prediction inaccuracy, feature weight, and
complexity, each pharmacophore is priced.

CATALYST overcomes major 3D QSAR
technique disadvantages. However, CATALYST has
several limitations. Flexible ligand molecules may not be
able to wuse all 250 conformers generated by
CATALYST's  conformation  generator.  Thus,
CATALYST may not contain the bioactive conformer of
active drugs, resulting in erroneous pharmacophore
models. CATALYST does not develop combinations of
physico-chemical and pharmacophoric models.

CSP-SAR

Principle. CSP-SAR is a unique 3D QSAR
model development approach based on our
Conformationally Sampled Pharmacophore (CSP)
method [54-56]. This technique overcomes ligand
alignment issues for conformationally flexible ligands.
In the absence of the target molecule, a ligand molecule's
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active or bound conformation may not be the lowest-
energy conformer [57]. The conformational space of
each ligand must be rigorously sampled to optimize the
presence of bioactive conformers in the model. CSP
considers all available conformations of each ligand
molecule for pharmacophore creation, unlike other
approaches. CSP maximizes the bioactive conformer's
model inclusion probability.

The CSP technique relies on descriptors that
contain chosen pharmacophore properties and all
available conformations of each ligand. The descriptors
must be considered as probability distributions that
encompass all potential distances between two
pharmacophore characteristics, angles between three,
etc. We will use CSP data on bile acid conjugates and
associated transporter (Apical Sodium-dependent Bile
acid Transporter or ASBT) to explain this notion [58].
Fig. (2) shows three conjugates of the bile acid 9, 2 and
with three pharmacophore points (the original research
evaluated 30 points on 13 compounds). Three conjugates
from Fig. (2) will be used in this example. MD

simulations were performed on each conjugate to acquire
all potential conformations and establish descriptor
probability distributions based on pharmacophore
properties in Fig. (3). Compounds 9 (red), 2 (blue), and
21 (turquoise) have one-dimensional descriptors for the
NG-OA distance and OA-NG-CG angles [59]. The
probability distributions show that each conjugate
samples a variety of conformations. These distributions
reflect the descriptors, and their overlap (see next
paragraph) may be employed as independent variables
for model construction. Additional descriptors may be
created in two or more dimensions. See Fig. (4) for 2D
probability distributions for the two structural
descriptors in Fig. (3). The distributions show that 9 and
2 share considerable structural similarity to the provided
descriptors, but 21 did not sample conformational space
related to either 9 or 2. According to this qualitative
study, 9 and 2 should have comparable activity as 21.
Notably, this approach did not need ligand alignment,
just a comparison of the specified pharmacophore feature
probability distributions. Another benefit of CSP is that
structural alignment is not required.

Figure 2: Structures of three bile acid conjugates (A) 9, (B) 2 and (C) 21 used by Gonzalez and coworkers [20].
OA, CG and NG
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Figure 3: 1D probability distributions of distance between pharmacophoric points NG (basic nitrogen) and OA (a-
acid) and angle between pharmacophoric points OA, NG and CG (amide carbon) for hASBT inhibitors;
compound 2 (blue), 9 (red) and 21 (turquoise)

While use of the CSP approach in a qualitative
manner is of utility, as described below, quantitative
analysis is required to predict inhibition constants,
potencies and so on. This requires that the degree of
overlap of the probability distributions of the individual
ligands be determined, yielding overlap coefficients that
may be used directly in regression analysis. 1D overlap
coefficient of a single structure descriptor between two
ligands can be calculated using the following relation for
discrete probability density functions, represent three
pharmacophore feature points used in the study.

N .
OC = Xi=1 Minpa: pary 1)

where PAiand PB! are the probability in bin i for
compounds A and B and N is the total number of bins.
Similarly, 2D overlap coefficients between two different
structural descriptors can be calculated based on Eq. 2
[601]:
Yij Pijki.Pijl

(P )23 (P, )2
0 = (PP TPy o

where P is the normalized probability at pixel ij
from the 2D distributions for compounds k (the reference
chemical) and I. Usually the most powerful compound is
selected to be the reference compound. Thus, overlap
coefficients quantify ligand similarity to the reference
chemical in their sampling conformation space (see
below). Consider the 2D distributions in Fig. (4), 2D
overlap coefficients for 2 and 21 were computed with
regard to 9; 2 provided an overlap coefficient of 0.688
whereas this value for 21 is 0. The research found that 9
(0.953uM) and 2 (2.26uM) were effective hASBT
inhibitors, whereas 21 (31.8uM) exhibited intermediate
efficacy. In that study, which used 13 ligands and
multiple regression analysis, the CSP-SAR method was
able to obtain quantitative and qualitative correlations
with  experimental data, providing a physical
understanding of the compounds' biological activity.
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Figure 4. 2D probability distributions of distance between pharmacophoric points NG (basic nitrogen) and OA (a-
acid) and angle between pharmacophoric points OA, NG and CG (amide carbon) for hASBT inhibitors;
compound 2 (blue), 9 (red) and 21 (turquoise)
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The overlap coefficients, structural descriptors,
may be easily linked with physical property descriptors,
a final CSP benefit. Physical parameters like polar
surface area, dipole moment, and free energy of solvation
may be determined for each ligand and used in regression
analysis. Calculating the physical characteristic for each
ligand conformation and utilizing the average results for
regression analysis may be necessary. Physical attributes
are easily included in the CSP technique, another
strength.

REVIEW OF LITERATURE

Das et al.,, 2023 [61] Drug discovery using
phytocompounds is common due to their chemical and
functional diversity. Multiple phytocompounds have
been employed to produce novel cancer treatments. New
anti-cancer leads, which phytocompounds can provide,
are a priority for pharmaceutical companies and
researchers worldwide. Due to their efficiency, reduced
time, and cost-effectiveness, computational approaches
like virtual screening (VS), molecular dynamics (MD),
pharmacophore modeling, Quantitative structure—
activity relationship (QSAR), Absorption Distribution
Metabolism Excretion and Toxicity (ADMET), network
biology, and machine learning (ML) have grown in
popularity. This paper summarizes in silico findings on
plant-based compounds for cancer lead discovery. This
review discusses studies published in the last 56 years
that use computational methods and emerging methods
like network pharmacology and ML to find Phyto
molecules as cancer leads. This study includes lists
public databases and webservers for phytocompound-
related drug development. This review should help
pharmacologists, medicinal chemists, molecular
biologists, and others transform natural products (NPs)
into clinically viable lead molecules.

Ntie-Kang et al., 2014 [62] Anticancer
chemicals that occur naturally account for approximately
half of the chemotherapeutic medications that have been
introduced to the market for the treatment of cancer up
to this point. Computer-based or in silico virtual
screening approaches are frequently utilized in the
protocols that are used for lead and hit finding. A
comprehensive investigation was conducted to examine
the "drug-likeness" of around 400 compounds derived
from African medicinal plants. These compounds have
demonstrated anticancer, cytotoxic, and antiproliferative
properties in vitro and/or in animal. In order to determine
whether or not the compounds have the ability to bind to
anticancer drug targets, in silico modeling was used to
investigate the interactions that occurred between the
compounds and 14 different targets. Docking and
binding affinity calculations were performed, and the
results were compared to known anticancer drugs, which
included around one thousand naturally occurring plant-
based chemicals from all over the world. According to
the findings, various medicinal plants found in Africa
have the potential to serve as a valuable starting point for
the development of anticancer medications. The limited

data collection that was produced, which was given the
moniker Afro Cancer, has been made accessible to
research groups that are working on virtual screening.

De Aradjo et al., 2020 [63] Computer-Aided
Drug Design (CADD) methods are compared to
highthroughput screening for candidate medications due
to their versatility, low cost, and ability to lower in vitro
screening and synthesis step costs. Secondary
metabolism of plants and other organisms produces huge
amounts of unique chemical compounds having
biological and pharmacological effects for practically
every disease, including cancer. Vimblastine, vincristine,
taxol, podophyllotoxin, captothecin, and cytarabine help
cancer treatment. This review updates Ligand-Based
Drug Design and Structure-Based Drug Design for
flavonoids, alkaloids, and coumarins to uncover
oncology-relevant compounds or fragments. Multiple
databases were methodically searched. The search
focused on papers from the past decade. Cancer-related
chemical structures (coumarin, flavonoids, and
alkaloids) and the infinite synthetic possibilities for
analogous compounds create a huge chemical
environment to explore, making it difficult for screening
studies to select compounds with better target activity.
Virtual screening tests utilizing CADD are the cheapest
and most effective means to select compounds with
better activity and "drug ability".

Chavda et al., 2021 [64] The properties that
program necrosis in natural chemical substances have
been extensively studied. To determine pharmacological
activity, concentrated plant extracts without active
moieties are used to screen compounds. Modern
medicine has focused on isolating and purifying one or
two complicated active and isomeric compounds for 20
years. Multi-target medicines have evolved rapidly from
an innovative approach in the early 2000s to one of the
most popular drug development trends in 2021.
However, fragment-based drug discovery is being
studied for target-based drug discovery of strong natural
anticancer medicines. This technique stresses well-
defined fragments above natural mixes. This paper
summarizes the latest advances in natural anticancer
drugs, including computer-assisted and fragment-based
structural elucidation and a multi-target exploration
technique for natural compounds.

Ulucan-Karnak et al., 2023 [65] Around the
world, millions of individuals are afflicted with cancer.
In order to identify medicine that is both effective and
affordable, a significant amount of research is carried
out. Over the course of the last few decades, natural
compounds derived from plants have garnered a lot of
attention as potential innovative medicinal agents.
Because of the wide variety of chemical compounds that
nature contains, it is a tremendous source of potential
medicinal molecules. When it comes to the progression
of medication discovery, anticancer plant metabolites are
currently being considered as potential replacements for
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chemically manufactured pharmaceuticals.
Bioinformatics-based technologies have the capability of
identifying compounds that have the potential to fight
cancer. The use of computational methods could thereby
pave the way for the rapid and cost-effective discovery
of prospective drug candidates and molecular targets
within the pharmaceutical industry. We will present an
introduction of the use of herbal resources for the
treatment of cancer, as well as methodologies for drug
design, with a special focus on structure-based drug
design, and examples of how drug design can be applied
to plant-based molecules.

Rahman et al., 2022 [66] Immune system and
cancer research has led to new treatments. Future drugs
will kill and stop cancer cell growth with precise signals.
Machine learning speeds up therapeutic research for
difficult ailments. Machine learning could investigate
cancer genomes and develop subtype-specific drugs.
New drug development is costly, risky, and time-
consuming. Costs over $1 hillion to make drugs over 15
years. Thus, CADD may improve design speed, cost, and
efficiency. From hit identification to optimization, many
scanning systems use ligand screening and structural
virtual screening to improve drug development
productivity and analysis. This review examined
numerous  computational  anticancer  medication
methods. Machine learning in fundamental and
translational cancer research is too far off for tailored
treatment and fast data processing. Every cancer patient
requires safe, effective treatment. Recently developed
computational drug discovery technologies improve
cancer drug design and treatment. Computeraided
anticancer medication development is covered here.
Transcriptomics, toxicogenomics, functional genomics,
and biological networks predict anticancer medication
and therapy combinations. Knowledge of databases and
computational approaches may aid cancer treatment
development.

Mangal et al., 2013 [67] Pharmaceutical
corporations and biomedical researchers favor
plantderived compounds for therapeutic development
since they are assumed to be optimized during evolution.
To complement the other databases, we have collected
and compiled a central resource Naturally Occurring
Plant-based Anti-cancer Compound-Activity-Target
database (NPACT, http://crdd.osdd.net/raghava/npact/)
with experimentally validated plant-derived natural
compounds with anti-cancerous activity (in vitro and in
vivo). Each of its 1574 compound entries includes
structure, manually curated published data on in vitro
and in vivo experiments, reference for user referral,
inhibitory values (ICso/EDso/ECs0/Glsg), properties
(physical, elemental, and topological), cancer types, cell
lines, protein targets, commercial suppliers, and drug
likeness. We offer an online similarity tool and other
ways to view or query NPACT. Each record links to
Super Natural, Herbal Ingredients' Targets, Comparative

Toxicogenomic Database, PubChem, and NCI60 Glsg
data to make data retrieval easier.

Prada-Gracia et al., 2016 [68] New medication
development is complicated, dangerous, expensive, and
time-consuming. Conventional drug discovery can take
15 years and cost over a billion dollars. Fortunately, new
methods have changed this. Computational methods are
essential to many drug development projects because to
the many new technology and methods that have
improved drug discovery. Many discovery initiatives use
ligand- or structure-based virtual screening for hit
identification ~and lead  optimization.  These
computational approaches have had a big impact on
creating possible anticancer medications and therapeutic
candidates, providing valuable cancer insights. In this
study, we examine rational design and describe some of
the most representative compounds identified by it. Case
studies of successful anticancer drug design reveal that
research improvements and in silico drug design can
develop novel anticancer medications.

De et al., 2019 [69] The utilization of in silico
tools in the process of developing medications that are
effective against cancer. The compilation of many
computer-aided drug design strategies that have been
utilized in the process of developing anti-cancer
medications. The use of structurebased, ligand-based,
hybrid  protein-ligand pharmacophore techniques,
homology modeling, and molecular docking can be of
great assistance at various stages of the drug discovery
pipeline, resulting in significant time and cost savings. In
addition, in silico tools have applications in the field of
medication development for cancer patient treatment.
PUMA inhibitors were identified with the assistance of
structure-based pharmacophore modeling. Additionally,
a structure-based approach was utilized for the
development of Bcl-2 inhibitors, with high throughput
screening. This approach was utilized to derive the most
relevant protein-protein interactions, anti-mitotic agents,
and I-Kappa-B Kinase B (IKK- p) inhibitors.
Additionally, they were utilized to screen for a new class
of aromatase inhibitors, which have the potential to be
important targets in cancer therapy. It has been
discovered that the utilization of computational tools in
the process of designing anti-cancer medications is
successful.

Vibala et al., 2020 [70] Cancer is one of the
leading causes of death and is rising. Multiple cancer
treatments are available, yet none are effective. One of
the biggest problems in chemotherapy is drug toxicity.
However, plant and plant derivative cancer treatments
are effective and safe. Most cancer-targeted medication
development nowadays uses plant and plant natural
components. Some natural compounds and their
equivalents are effective anticancer agents. This review
highlights recent plant species with invitro or invivo
anticancer  activities.  Invention of plant-based
medications takes time and money. Many labor-intensive
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high-throughput technologies are being developed.
Bioinformatics and bioscience are essential to high-
throughput data creation. This is frequent in drug
discovery and design. Bioinformatics and computational
methods are rarely applied in plant-based research and
technology. The aforesaid medicinalplant research
methods are covered in this review. Using these
strategies in medicinal plant research may lead to
cheaper and simpler medication design.

RESEARCH METHODOLOGY

The research study titled "Computational
Models Generation for Designing of Plant-Based
Anticancer Agents" makes use of a comprehensive
collection of computational approaches in order to
generate models that can anticipate the possible
anticancer effects of chemicals derived from plants. The

following is an overview of the primary computational
methods that were utilized in the research:

3.1 Molecular Docking:

*  Purpose: Molecular docking is employed to
simulate the interaction between plant-derived
compounds and  specific cancer-related
molecular targets.

* Methodology:  Computational  algorithms
predict the preferred orientation and binding
affinity of the plant compounds within the
active site of target proteins.

*  Outcome: The results provide insights into the
potential of each compound to interact with the
target, guiding the selection of candidates for
further investigation.

Target

Ligand

: +
)
‘ + > “V

Complex

docking

»
cocking

*

Figure 5: Molecular Docking

3.2 Machine Learning Algorithms:

*  Purpose: Machine learning models are utilized
to analyze and predict the anticancer properties
of plant compounds based on a set of defined
features.

*  Methodology: Datasets containing information
on the chemical and structural properties of the

compounds, as well as their known anticancer
activities, are used to train machine learning
algorithms.

*  OQOutcome: The trained models can then predict
the anticancer potential of new, untested
compounds, aiding in the identification of
promising candidates.

Machine Learning Types

[ l

Supervised Learning

Unsupervised Learning } {Semi-SupervisedLearningJ } Reinforcement Learning J

Housing Price Customer

prediction Segmentation
Medical Market Basket
Imaging Analysis

Text
Classification

Optimized
Marketing

Lane-finding on
GPS Data

Driverless Cars

Figure 6: Types of Machine Learning
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3.3 Bioinformatics Tools:

* Purpose: Bioinformatics tools are applied to
analyze biological data, including information
on the genetic and molecular aspects of cancer
pathways.

*  Methodology: The integration of
bioinformatics involves the interpretation of

omics data, pathway analysis, and identification
of potential targets associated with cancer.

¢ Qutcome: Bioinformatics analysis contributes
to the selection of relevant molecular targets for
molecular docking studies and guides the
overall strategy for identifying plant
compounds with anticancer properties.

l— Genomics
\ Transcriptomics

g ———

Proteomics

Figure 7: Integration Bioinformatics Tools

3.4 Data Integration and Mining:

* Purpose: Integration of diverse datasets from
various sources, including chemical databases
and biological repositories.

* Methodology: Computational techniques for
data integration and mining are employed to
extract relevant information on the chemical

properties, bioavailability, and known activities
of plant compounds.

* Qutcome: The integrated data provide a
comprehensive foundation for the subsequent
computational analyses, facilitating a more
holistic understanding of the potential
anticancer properties of the plant compounds.

e Unified View

Figure 8: Data Integration in Data Mining

Specify the criteria for selecting plant compounds

In "Computational Models Generation for
Designing of Plant-Based Anticancer Agents,” plant
molecules matching particular criteria are carefully
selected. Ethnopharmacological significance favors
plants with a traditional medicine background, notably
for cancer treatment. Based on biological activities,
substances with anticancer characteristics in the
literature are included. We seek diverse chemical classes
to ensure a broad molecular range for computational
analysis and increase the possibility of discovering novel
anticancer drugs. Selecting substances that are readily
available for experimental validation is based on

availability and source. Compounds with good safety
profiles are prioritized. Structurally complex chemicals
that may interact uniquely with cancer targets are
preferred. Compounds must meet target specificity,
bioavailability, and druglikeness criteria to be developed.
Finally, computational feasibility favors chemicals
suitable for investigation analytical procedures. The
study uses these criteria to gather a varied and promising
set of plant chemicals for computer modeling to find
effective plant-based anticancer medicines.
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Describe how the anticancer properties were assessed

The evaluation of anticancer qualities in the
article "Computational Models Generation for Designing
of Plant-Based Anticancer Agents" requires the
integration of computational methodologies in a
methodical manner. For the purpose of predicting the
interactions between certain plant chemicals and cancer-
related molecular targets, molecular docking studies are
utilized. These studies provide insights into the probable
binding affinities of cancer-related molecules. It is
possible to make predictions about the anticancer
potential of plant compounds by using machine learning
models that have been trained on datasets that include the
chemical and structural features of botanical substances.
Putting the computational findings into context within
the setting of cancer-related pathways is made easier
with the incorporation of bioinformatics technologies.
The trustworthiness of the computational predictions is
further improved by the process of validation against
experimental data and statistical studies. A thorough
awareness of the possible influence that plant
compounds may have on molecular targets and pathways
associated with cancer is provided by this holistic

approach, which not only prioritizes plant compounds
based on their projected anticancer efficacy but also
provides a comprehensive understanding of the potential
impact that these compounds may have.

Plant-Based Anticancer Agents

Bioactive chemicals obtained from plants can
inhibit or reduce cancer cell development. Oncology is
interested in these medicines due to their various
chemical structures and methods of action. Plants are
rich in secondary metabolites such alkaloids, flavonoids,
terpenoids, and polyphenols, which have many
pharmacological  effects, including  anticancer
characteristics. These plantderived chemicals are studied
for their ability to disrupt cancer-related cell cycle
regulation, apoptosis, angiogenesis, and metastasis.
Traditional pharmacological methods and current
computational methods are used to identify and optimize
plant-based anticancer medicines that may be more
effective and less harmful. The study of plant-based
anticancer medicines is part of an increasing interest in
combining traditional medicine with modern drug
discovery.

Anticancer
plants

Cancer cells

v
-

-
-,
Py

Pre-clinical
Cytotoxicity
assessment

Literature

Review of
>250 articles

Clinical therapy

Ve
@
L 2 4

Patient

Figure 9. Plant-derived anticancer agents

Computational Models Generation

Generating mathematical or computational
models to simulate and forecast complicated systems,
phenomena, or processes is computational model
generation. In "Computational Models

Generation for Designing of Plant-Based
Anticancer Agents," mathematical frameworks or
algorithms are used to anticipate plant chemicals' cancer
cell growth inhibitory effects. These models use

molecular ~ docking,  machine learning, and
bioinformatics to analyses massive plant chemical
datasets, understand their interactions with cancer-
related molecular targets, and rank candidates for
experimental validation. The goal is to use computational
methods to speed drug discovery, find promising plant-
based anticancer chemicals, and develop novel and
effective therapy regimens. These computational models
efficiently screen and prioritize anticancer drugs,
speeding up the drug discovery pipeline.
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Figure 10: Architecture of the computational model

RESULTS AND DISCUSSION

Ligand-based drug design is inherently a
complicated problem as this approach is restricted to
considering only one side of the actual biochemical
process. Receptor molecules and/or ligands have often
been shown to go through substantial conformational
changes in order to promote their interaction [71-75].
More current  methodologies include  several
conformations during model creation, whereas earlier
pharmacophore approaches generally did not account for
ligand conformational flexibility by employing just
minimal energy conformations of the ligands. Even
while these approaches provide a great deal of
improvement, they are still constrained by the fact that
they involve a narrow range of conformations and need
ligand alignment. By include all ligand conformations
that are available and using the overlap of probability
distributions of pharmacophore characteristics in model
creation, the CSP approach essentially gets around these
restrictions. Furthermore, physicochemical
characteristics may be easily integrated using the
CSPSAR approach. Several research conducted in our
labs and by other scientists have shown the usefulness of
this strategy.

It is clear that ligand-based drug design is an
effective method for learning about the properties of
ligands that are critical to their biological activity in the
absence of the receptor structure. Examining a
therapeutic target's ligands' structural and physico-
chemical characteristics may reveal the kinds of
interactions crucial to the desired pharmacological
response. Furthermore, the methodology may forecast
distinct chemical structures with properties that facilitate
the interaction with the target molecule. As previously
indicated, there are several ways to approach the process
of ligand-based modeling. Nevertheless, it is highly

recommended that one has a solid understanding of the
underlying idea behind the chosen technique in order to
properly apply these methods to complex biological
systems.

CoONCLUSION AND FUTURE SCOPE

In conclusion, there is a lot of potential to
advance drug discovery and development via the use of
computer models in the creation of plant-based
anticancer medicines. The drug development process has
been optimized by the systematic identification of
promising therapeutic compounds made possible by the
synergy between medicinal plant research and
computational techniques. Future work on improving
and verifying computational models and integrating
cutting-edge technologies like machine learning and
artificial intelligence will be focused on improving
prediction accuracy. = Computational  biologists,
pharmacologists, and botanists working together will
increase the number of medicinal plants in the database
and improve the models to include more bioactive
components. Furthermore, by combining virtual
screening with lead optimization using these models, it
will be possible to identify attractive candidates for
experimental validation more quickly, leading to more
effective and focused anticancer tactics. The
manufacture and testing of anticipated compounds will
become more efficient as technology advances, saving
time and money on medication development. All things
considered, the combination of plant-based drug
discovery with computer modeling not only constitutes a
recent success, but also paves the way for a creative
future in the search for potent natural anticancer
medicines.
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