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Abstract: The objective of this abstract is to offer an overview of the significance 

of using computational models in the process of developing anticancer drugs that 

are derived from fruits and vegetables. This is a branch of research that integrates 

traditional medical knowledge with modern approaches that are used in the process 

of medication creation. By using computational methods such as molecular 

docking, quantitative structure-activity relationship (QSAR) studies, and molecular 

dynamics simulations, it may be possible to get a better understanding of the 

complex interactions that take place between compounds originating from plants 

and cancer targets. The process of discovering potential anticancer medications is 

sped up by these models, which also provide an efficient path for lead optimization. 

Specifically, they do this by conducting a rigorous investigation of the chemical 

landscape of a broad range of plant compounds. Both the relevance of 

computational tools in the process of expediting drug discovery and the potential 

of plant-based medicines as a rich source of new and targeted anticancer 

medications are brought to light by this integrated approach. Not only does it 

emphasize the value of computational tools, but it also illustrates the promise of 

plant-based medicines. 

Keywords: Computer-aided drug design, Drug design, QSAR, Anti-cancer, Drug 

discovery. 
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INTRODUCTION  
Since cancer continues to be a significant 

obstacle in terms of global health, it is imperative that 

novel techniques be taken in order to create anticancer 

drugs that are successful. The conventional methods of 

drug development need a significant amount of time and 

resources that are spent. When seen in this light, 

computer models have emerged as extremely useful tools 

for identifying and optimizing possible medication 

candidates.  

 

The purpose of the research topic or objective 

known as "Computational Models Generation for 

Designing of Plant-Based Anticancer Agents" is to 

examine and execute computational approaches with the 

intention of systematically designing and identifying 

possible anticancer drugs that are derived from plant 

chemicals. To be more specific, the purpose of the study 

is to make use of sophisticated computational models, 

such as molecular docking and machine learning 

techniques, in order to conduct an analysis of huge 

datasets of compounds originating from plants. The 

primary objective is to identify and prioritize molecules 

that possess substantial anticancer capabilities, with the 

end goal of simplifying the process of drug discovery. 

Ultimately, the purpose of this research is to contribute 

to the creation of novel and effective anticancer 

medicines that are derived from plant-based natural 

products. This research aims to address the obstacles that 

are associated with traditional drug discovery methods 

by harnessing the power of computational 

methodologies.  

 

In order to reduce the amount of time needed for 

innovative drug candidate discovery, characterization, 

and structural optimization, computer-aided drug design, 

or CADD, is a highly helpful tool in rational drug design 

[1-5]. Rational medication design may also benefit from 

the use of CADD. Prodrugs are often made to improve 

the parent drug molecules' bioavailability or selectivity 

[6-8]. The study of molecules that interact with the 

biological target of interest is the indirect means via 

which ligand-based drug design aims to promote the 
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production of pharmacologically active drugs [9]. On the 

other hand, structure-based drug design techniques 

directly discover or optimize therapeutic candidates 

based on their understanding of the target molecule's 

three-dimensional structure [10-12].  

 

Selecting a good target molecule linked to a 

disease is the first step in any drug creation process. A 

prospective therapeutic target is often a major protein in 

a biochemical pathway connected to the disease state 

[13-15]. Lead chemicals are substances that are either 

intended to stimulate or inhibit a particular biochemical 

pathway based on the nature of the illness condition [16-

17], [1819]. Optimizing the lead compounds to 

maximize the interaction with the target molecule is the 

next phase in the drug development process. CADD may 

be very helpful in directing the lead optimization 

procedure.  

BASICS OF QSAR  

The QSAR method and pharmacophore 

modeling are the most widely used techniques for 

ligandbased drug design. A computer tool called QSAR 

quantifies the link between a series of chemicals' 

chemical structures and a chemical or biological process. 

The QSAR idea is that identical structural or 

physiochemical features produce similar activity [20-

21]. First, a set of chemical entities or lead molecules 

with the necessary biological activity is found. A 

quantifiable association exists between active molecule 

physico-chemical properties and biological activity. The 

QSAR model optimizes active chemicals for biological 

activity. The anticipated chemicals are then 

experimentally tested for activity. Thus, QSAR may help 

identify chemical changes with better activity.  

 

The general methodology of QSAR is built 

upon a series of consecutive steps (Fig. 1): 

 

 
Figure 1. Typical workflow of QSAR methods 

• Identify ligands with experimentally measured values of the desired biological activity. Ideally these ligands are of a 

congeneric series but should be of adequate chemically diversity to have a large variation in activity. 

• Identify and determine molecular descriptors associated with various structural and physicochemical properties of 

the molecules under study. 

• Discover correlations between molecular descriptors and the biological activity that can explain the variation in 

activity in the data set. 

• Test the statistical stability and predictive power of the QSAR model. 

 

Ligand Based Drug Design  

Ligand-based drug design is a method that is 

used when there is a lack of information on the 

threedimensional structure of the receptor. This method 

is dependent on the knowledge of compounds that bind 

to the biological target of interest. Within the realm of 

ligand-based drug design, the most significant and 

extensively used methods are pharmacophore modeling 

and three-dimensional quantitative structure activity 

relationships, often known as 3D QSAR. In addition, 

they are able to provide predictive models that are 

appropriate for lead identification and optimization [22]. 

Additional information on these methodologies and their 

application to the design and development of 5-LOX 

inhibitors is offered in a different section of the study.  
 

3D QSAR  

As the name implies, the 3D QSAR approach 

uses descriptors to characterize a molecule's 
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threedimensional properties in order to create a QSAR 

model. The three-dimensional features of the ligands in 

the three-dimensional QSAR approach may be described 

by a range of geometric, physical, and quantum chemical 

descriptors. Following that, a pharmacophore that 

explains the biological action of the ligands is created by 

combining these molecular descriptors. The 

threedimensional spatial orientation of different 

properties, such acceptors or donors of hydrogen bonds, 

that are necessary for the intended biological activity is 

known as a pharmacophore [23-24]. To create the final 

3D QSAR model, the produced pharmacophore model is 

evaluated for statistical significance and stability. A 

number of review publications are already available that 

go into great detail about several 3D QSAR modeling 

methodologies [25-35]. The main 3D QSAR methods 

that are presently being used for drug design will be 

briefly described in the section that follows in order to 

prevent duplication. The CSP-SAR approach developed 

in our laboratory and its applications will be thoroughly 

explained in the closing part.  

 

CoMFA  

One of the most popular 3D QSAR approaches 

is CoMFA [36]. CoMFA was the first QSAR approach 

to link molecule biological activity to 3D shape-

dependent steric and electrostatic characteristics. The 

molecules' 3D structures are aligned on a 3D grid, and 

steric and electrostatic potential energies are determined 

at each grid point. CoMFA usually assumes the bioactive 

conformer is the minimal energy conformer. For systems 

with known crystal structures, crystal coordinates may 

determine bioactive conformers. Field values for 

potential energy terms are determined at each grid point 

for each molecule and associated with biological activity. 

CoMFA models are developed using PCA or PLS. We 

next evaluate the CoMFA model for statistical 

significance and robustness. Aligning bioactive 

conformers is crucial to CoMFA model performance and 

prediction [37-40]. The bioactive conformation is not 

always the lowest energy conformation in the absence of 

the receptor [41-43], hence CoMFA's selection of 

bioactive conformers and alignment approach may give 

incorrect models. CoMFA's application is limited by 

ignoring ligand dynamics. The energy function of 

CoMFA does not explicitly account for hydrophobicity 

or hydrogen bond interactions [44-46]. CoMFA 

calculates steric and electrostatic interaction using 

Lennard-Jones and Coulombic potential functions, 

which might result in unreasonably large energy terms 

owing to their hyperbolic natures. To prevent such 

behavior, CoMFA assigns an arbitrary cutoff value for 

these potential functions [47-48].  

 

CoMSIA  

Similar to CoMFA, Comparative Molecular 

Similarity Indices (CoMSIA) [49] is a 3D QSAR 

method. Nevertheless, in addition to steric and 

coulombic contributions, the molecular field expression 

of CoMSIA also contains hydrophobic, hydrogen-bond 

donor and acceptor components, unlike CoMFA. By 

comparing each ligand molecule with a common probe 

that has a radius of 1Å and charge, hydrophobicity, and 

hydrogen bond characteristics equal to 1, CoMSIA also 

computes the similarity indices rather than contact 

energies [50]. CoMSIA describes the steric, electrostatic, 

and hydrophobic components of the energy function 

using a bell-shaped Gaussian function. This enables 

CoMSIA to avoid using an arbitrary cutoff value for the 

energy computations, in contrast to CoMFA. The ligand-

protein binding relationship is described by similarity 

indices that correlate to CoMSIA molecular fields [51].  

 

Catalyst  

3D QSAR's conformational flexibility has been 

taken into account. One well-known 3D QSAR 

application, CATALYST [52], uses conformational 

variation to build models. Using the poling approach, 

CATALYST samples the conformational space of 

ligands [53]. At a predetermined threshold of 20 

kcal/mol above the global minimum conformation, this 

process yields 250 conformers. Functional group spatial 

orientations are used to create the pharmacophore 

hypothesis, and estimated and observed activity levels 

are used to assess QSAR models. The primary functional 

categories or pharmacophoric attributes are:  

1. Hydrogen-bond acceptor  

2. Hydrogen-bond donor   

3. Positively charges group (basic)   

4. Negatively charged group (acidic)  

5. Aromatic ring  

6. Aliphatic hydrophobic moieties   

7. Aromatic hydrophobic moieties  

 

Pharmacophore production involves 

constructive and subtractive steps. A pharmacophore 

hypothesis is built using molecules with activity above a 

threshold value during the constructive phase. Any 

pharmacophore that fits more than half of the inactive 

compounds is excluded in the subtractive phase. Based 

on prediction inaccuracy, feature weight, and 

complexity, each pharmacophore is priced.  

 

CATALYST overcomes major 3D QSAR 

technique disadvantages. However, CATALYST has 

several limitations. Flexible ligand molecules may not be 

able to use all 250 conformers generated by 

CATALYST's conformation generator. Thus, 

CATALYST may not contain the bioactive conformer of 

active drugs, resulting in erroneous pharmacophore 

models. CATALYST does not develop combinations of 

physico-chemical and pharmacophoric models.  

 

CSP-SAR  

Principle. CSP-SAR is a unique 3D QSAR 

model development approach based on our 

Conformationally Sampled Pharmacophore (CSP) 

method [54-56]. This technique overcomes ligand 

alignment issues for conformationally flexible ligands. 

In the absence of the target molecule, a ligand molecule's 
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active or bound conformation may not be the lowest-

energy conformer [57]. The conformational space of 

each ligand must be rigorously sampled to optimize the 

presence of bioactive conformers in the model. CSP 

considers all available conformations of each ligand 

molecule for pharmacophore creation, unlike other 

approaches. CSP maximizes the bioactive conformer's 

model inclusion probability.  

 

The CSP technique relies on descriptors that 

contain chosen pharmacophore properties and all 

available conformations of each ligand. The descriptors 

must be considered as probability distributions that 

encompass all potential distances between two 

pharmacophore characteristics, angles between three, 

etc. We will use CSP data on bile acid conjugates and 

associated transporter (Apical Sodium-dependent Bile 

acid Transporter or ASBT) to explain this notion [58]. 

Fig. (2) shows three conjugates of the bile acid 9, 2 and 

with three pharmacophore points (the original research 

evaluated 30 points on 13 compounds). Three conjugates 

from Fig. (2) will be used in this example. MD 

simulations were performed on each conjugate to acquire 

all potential conformations and establish descriptor 

probability distributions based on pharmacophore 

properties in Fig. (3). Compounds 9 (red), 2 (blue), and 

21 (turquoise) have one-dimensional descriptors for the 

NG-OA distance and OA-NG-CG angles [59]. The 

probability distributions show that each conjugate 

samples a variety of conformations. These distributions 

reflect the descriptors, and their overlap (see next 

paragraph) may be employed as independent variables 

for model construction. Additional descriptors may be 

created in two or more dimensions. See Fig. (4) for 2D 

probability distributions for the two structural 

descriptors in Fig. (3). The distributions show that 9 and 

2 share considerable structural similarity to the provided 

descriptors, but 21 did not sample conformational space 

related to either 9 or 2. According to this qualitative 

study, 9 and 2 should have comparable activity as 21. 

Notably, this approach did not need ligand alignment, 

just a comparison of the specified pharmacophore feature 

probability distributions. Another benefit of CSP is that 

structural alignment is not required.  

 

 
Figure 2: Structures of three bile acid conjugates (A) 9, (B) 2 and (C) 21 used by Gonzalez and coworkers [20]. 

OA, CG and NG 
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Figure 3: 1D probability distributions of distance between pharmacophoric points NG (basic nitrogen) and OA (α-

acid) and angle between pharmacophoric points OA, NG and CG (amide carbon) for hASBT inhibitors; 

compound 2 (blue), 9 (red) and 21 (turquoise) 

 

While use of the CSP approach in a qualitative 

manner is of utility, as described below, quantitative 

analysis is required to predict inhibition constants, 

potencies and so on. This requires that the degree of 

overlap of the probability distributions of the individual 

ligands be determined, yielding overlap coefficients that 

may be used directly in regression analysis. 1D overlap 

coefficient of a single structure descriptor between two 

ligands can be calculated using the following relation for 

discrete probability density functions, represent three 

pharmacophore feature points used in the study.   

 

OC = (𝑃𝐴𝑖, 𝑃𝐵𝑖)   (1)  

 

where 𝑃𝐴𝑖and 𝑃𝐵𝑖 are the probability in bin i for 

compounds A and B and N is the total number of bins. 

Similarly, 2D overlap coefficients between two different 

structural descriptors can be calculated based on Eq. 2 

[60]:  

∑𝑖𝑗 𝑃𝑖𝑗𝑘⁡.𝑃𝑖𝑗𝑙 

OC =       (2)  

 

where P is the normalized probability at pixel ij 

from the 2D distributions for compounds k (the reference 

chemical) and l. Usually the most powerful compound is 

selected to be the reference compound. Thus, overlap 

coefficients quantify ligand similarity to the reference 

chemical in their sampling conformation space (see 

below). Consider the 2D distributions in Fig. (4), 2D 

overlap coefficients for 2 and 21 were computed with 

regard to 9; 2 provided an overlap coefficient of 0.688 

whereas this value for 21 is 0. The research found that 9 

(0.953μM) and 2 (2.26μM) were effective hASBT 

inhibitors, whereas 21 (31.8μM) exhibited intermediate 

efficacy. In that study, which used 13 ligands and 

multiple regression analysis, the CSP-SAR method was 

able to obtain quantitative and qualitative correlations 

with experimental data, providing a physical 

understanding of the compounds' biological activity.  

 

 
Figure 4. 2D probability distributions of distance between pharmacophoric points NG (basic nitrogen) and OA (α-

acid) and angle between pharmacophoric points OA, NG and CG (amide carbon) for hASBT inhibitors; 

compound 2 (blue), 9 (red) and 21 (turquoise) 
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The overlap coefficients, structural descriptors, 

may be easily linked with physical property descriptors, 

a final CSP benefit. Physical parameters like polar 

surface area, dipole moment, and free energy of solvation 

may be determined for each ligand and used in regression 

analysis. Calculating the physical characteristic for each 

ligand conformation and utilizing the average results for 

regression analysis may be necessary. Physical attributes 

are easily included in the CSP technique, another 

strength.  

 

REVIEW OF LITERATURE  
Das et al., 2023 [61] Drug discovery using 

phytocompounds is common due to their chemical and 

functional diversity. Multiple phytocompounds have 

been employed to produce novel cancer treatments. New 

anti-cancer leads, which phytocompounds can provide, 

are a priority for pharmaceutical companies and 

researchers worldwide. Due to their efficiency, reduced 

time, and cost-effectiveness, computational approaches 

like virtual screening (VS), molecular dynamics (MD), 

pharmacophore modeling, Quantitative structure–

activity relationship (QSAR), Absorption Distribution 

Metabolism Excretion and Toxicity (ADMET), network 

biology, and machine learning (ML) have grown in 

popularity. This paper summarizes in silico findings on 

plant-based compounds for cancer lead discovery. This 

review discusses studies published in the last 5–6 years 

that use computational methods and emerging methods 

like network pharmacology and ML to find Phyto 

molecules as cancer leads. This study includes lists 

public databases and webservers for phytocompound-

related drug development. This review should help 

pharmacologists, medicinal chemists, molecular 

biologists, and others transform natural products (NPs) 

into clinically viable lead molecules.  

 

Ntie-Kang et al., 2014 [62] Anticancer 

chemicals that occur naturally account for approximately 

half of the chemotherapeutic medications that have been 

introduced to the market for the treatment of cancer up 

to this point. Computer-based or in silico virtual 

screening approaches are frequently utilized in the 

protocols that are used for lead and hit finding. A 

comprehensive investigation was conducted to examine 

the "drug-likeness" of around 400 compounds derived 

from African medicinal plants. These compounds have 

demonstrated anticancer, cytotoxic, and antiproliferative 

properties in vitro and/or in animal. In order to determine 

whether or not the compounds have the ability to bind to 

anticancer drug targets, in silico modeling was used to 

investigate the interactions that occurred between the 

compounds and 14 different targets. Docking and 

binding affinity calculations were performed, and the 

results were compared to known anticancer drugs, which 

included around one thousand naturally occurring plant-

based chemicals from all over the world. According to 

the findings, various medicinal plants found in Africa 

have the potential to serve as a valuable starting point for 

the development of anticancer medications. The limited 

data collection that was produced, which was given the 

moniker Afro Cancer, has been made accessible to 

research groups that are working on virtual screening.  

 

De Araújo et al., 2020 [63] Computer-Aided 

Drug Design (CADD) methods are compared to 

highthroughput screening for candidate medications due 

to their versatility, low cost, and ability to lower in vitro 

screening and synthesis step costs. Secondary 

metabolism of plants and other organisms produces huge 

amounts of unique chemical compounds having 

biological and pharmacological effects for practically 

every disease, including cancer. Vimblastine, vincristine, 

taxol, podophyllotoxin, captothecin, and cytarabine help 

cancer treatment. This review updates Ligand-Based 

Drug Design and Structure-Based Drug Design for 

flavonoids, alkaloids, and coumarins to uncover 

oncology-relevant compounds or fragments. Multiple 

databases were methodically searched. The search 

focused on papers from the past decade. Cancer-related 

chemical structures (coumarin, flavonoids, and 

alkaloids) and the infinite synthetic possibilities for 

analogous compounds create a huge chemical 

environment to explore, making it difficult for screening 

studies to select compounds with better target activity. 

Virtual screening tests utilizing CADD are the cheapest 

and most effective means to select compounds with 

better activity and "drug ability".  

 

Chavda et al., 2021 [64] The properties that 

program necrosis in natural chemical substances have 

been extensively studied. To determine pharmacological 

activity, concentrated plant extracts without active 

moieties are used to screen compounds. Modern 

medicine has focused on isolating and purifying one or 

two complicated active and isomeric compounds for 20 

years. Multi-target medicines have evolved rapidly from 

an innovative approach in the early 2000s to one of the 

most popular drug development trends in 2021. 

However, fragment-based drug discovery is being 

studied for target-based drug discovery of strong natural 

anticancer medicines. This technique stresses well-

defined fragments above natural mixes. This paper 

summarizes the latest advances in natural anticancer 

drugs, including computer-assisted and fragment-based 

structural elucidation and a multi-target exploration 

technique for natural compounds.  

 

Ulucan-Karnak et al., 2023 [65] Around the 

world, millions of individuals are afflicted with cancer. 

In order to identify medicine that is both effective and 

affordable, a significant amount of research is carried 

out. Over the course of the last few decades, natural 

compounds derived from plants have garnered a lot of 

attention as potential innovative medicinal agents. 

Because of the wide variety of chemical compounds that 

nature contains, it is a tremendous source of potential 

medicinal molecules. When it comes to the progression 

of medication discovery, anticancer plant metabolites are 

currently being considered as potential replacements for 
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chemically manufactured pharmaceuticals. 

Bioinformatics-based technologies have the capability of 

identifying compounds that have the potential to fight 

cancer. The use of computational methods could thereby 

pave the way for the rapid and cost-effective discovery 

of prospective drug candidates and molecular targets 

within the pharmaceutical industry. We will present an 

introduction of the use of herbal resources for the 

treatment of cancer, as well as methodologies for drug 

design, with a special focus on structure-based drug 

design, and examples of how drug design can be applied 

to plant-based molecules.  

 

Rahman et al., 2022 [66] Immune system and 

cancer research has led to new treatments. Future drugs 

will kill and stop cancer cell growth with precise signals. 

Machine learning speeds up therapeutic research for 

difficult ailments. Machine learning could investigate 

cancer genomes and develop subtype-specific drugs. 

New drug development is costly, risky, and time-

consuming. Costs over $1 billion to make drugs over 15 

years. Thus, CADD may improve design speed, cost, and 

efficiency. From hit identification to optimization, many 

scanning systems use ligand screening and structural 

virtual screening to improve drug development 

productivity and analysis. This review examined 

numerous computational anticancer medication 

methods. Machine learning in fundamental and 

translational cancer research is too far off for tailored 

treatment and fast data processing. Every cancer patient 

requires safe, effective treatment. Recently developed 

computational drug discovery technologies improve 

cancer drug design and treatment. Computeraided 

anticancer medication development is covered here. 

Transcriptomics, toxicogenomics, functional genomics, 

and biological networks predict anticancer medication 

and therapy combinations. Knowledge of databases and 

computational approaches may aid cancer treatment 

development.  

 

Mangal et al., 2013 [67] Pharmaceutical 

corporations and biomedical researchers favor 

plantderived compounds for therapeutic development 

since they are assumed to be optimized during evolution. 

To complement the other databases, we have collected 

and compiled a central resource Naturally Occurring 

Plant-based Anti-cancer Compound-Activity-Target 

database (NPACT, http://crdd.osdd.net/raghava/npact/) 

with experimentally validated plant-derived natural 

compounds with anti-cancerous activity (in vitro and in 

vivo). Each of its 1574 compound entries includes 

structure, manually curated published data on in vitro 

and in vivo experiments, reference for user referral, 

inhibitory values (IC50/ED50/EC50/GI50), properties 

(physical, elemental, and topological), cancer types, cell 

lines, protein targets, commercial suppliers, and drug 

likeness. We offer an online similarity tool and other 

ways to view or query NPACT. Each record links to 

Super Natural, Herbal Ingredients' Targets, Comparative 

Toxicogenomic Database, PubChem, and NCI60 GI50 

data to make data retrieval easier.  

 

Prada-Gracia et al., 2016 [68] New medication 

development is complicated, dangerous, expensive, and 

time-consuming. Conventional drug discovery can take 

15 years and cost over a billion dollars. Fortunately, new 

methods have changed this. Computational methods are 

essential to many drug development projects because to 

the many new technology and methods that have 

improved drug discovery. Many discovery initiatives use 

ligand- or structure-based virtual screening for hit 

identification and lead optimization. These 

computational approaches have had a big impact on 

creating possible anticancer medications and therapeutic 

candidates, providing valuable cancer insights. In this 

study, we examine rational design and describe some of 

the most representative compounds identified by it. Case 

studies of successful anticancer drug design reveal that 

research improvements and in silico drug design can 

develop novel anticancer medications.  

 

De et al., 2019 [69] The utilization of in silico 

tools in the process of developing medications that are 

effective against cancer. The compilation of many 

computer-aided drug design strategies that have been 

utilized in the process of developing anti-cancer 

medications. The use of structurebased, ligand-based, 

hybrid protein-ligand pharmacophore techniques, 

homology modeling, and molecular docking can be of 

great assistance at various stages of the drug discovery 

pipeline, resulting in significant time and cost savings. In 

addition, in silico tools have applications in the field of 

medication development for cancer patient treatment. 

PUMA inhibitors were identified with the assistance of 

structure-based pharmacophore modeling. Additionally, 

a structure-based approach was utilized for the 

development of Bcl-2 inhibitors, with high throughput 

screening. This approach was utilized to derive the most 

relevant protein-protein interactions, anti-mitotic agents, 

and I-Kappa-B Kinase β (IKK- β) inhibitors. 

Additionally, they were utilized to screen for a new class 

of aromatase inhibitors, which have the potential to be 

important targets in cancer therapy. It has been 

discovered that the utilization of computational tools in 

the process of designing anti-cancer medications is 

successful.  

 

Vibala et al., 2020 [70] Cancer is one of the 

leading causes of death and is rising. Multiple cancer 

treatments are available, yet none are effective. One of 

the biggest problems in chemotherapy is drug toxicity. 

However, plant and plant derivative cancer treatments 

are effective and safe. Most cancer-targeted medication 

development nowadays uses plant and plant natural 

components. Some natural compounds and their 

equivalents are effective anticancer agents. This review 

highlights recent plant species with invitro or invivo 

anticancer activities. Invention of plant-based 

medications takes time and money. Many labor-intensive 
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high-throughput technologies are being developed. 

Bioinformatics and bioscience are essential to high-

throughput data creation. This is frequent in drug 

discovery and design. Bioinformatics and computational 

methods are rarely applied in plant-based research and 

technology. The aforesaid medicinalplant research 

methods are covered in this review. Using these 

strategies in medicinal plant research may lead to 

cheaper and simpler medication design.  

 

RESEARCH METHODOLOGY  
The research study titled "Computational 

Models Generation for Designing of Plant-Based 

Anticancer Agents" makes use of a comprehensive 

collection of computational approaches in order to 

generate models that can anticipate the possible 

anticancer effects of chemicals derived from plants. The 

following is an overview of the primary computational 

methods that were utilized in the research:  

 

3.1 Molecular Docking:  

• Purpose: Molecular docking is employed to 

simulate the interaction between plant-derived 

compounds and specific cancer-related 

molecular targets.  

• Methodology: Computational algorithms 

predict the preferred orientation and binding 

affinity of the plant compounds within the 

active site of target proteins.  

• Outcome: The results provide insights into the 

potential of each compound to interact with the 

target, guiding the selection of candidates for 

further investigation.  

  

 
Figure 5: Molecular Docking 

  

3.2 Machine Learning Algorithms:  

• Purpose: Machine learning models are utilized 

to analyze and predict the anticancer properties 

of plant compounds based on a set of defined 

features.  

• Methodology: Datasets containing information 

on the chemical and structural properties of the 

compounds, as well as their known anticancer 

activities, are used to train machine learning 

algorithms.  

• Outcome: The trained models can then predict 

the anticancer potential of new, untested 

compounds, aiding in the identification of 

promising candidates.  

 

 
Figure 6: Types of Machine Learning 
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3.3 Bioinformatics Tools:  

• Purpose: Bioinformatics tools are applied to 

analyze biological data, including information 

on the genetic and molecular aspects of cancer 

pathways.  

• Methodology: The integration of 

bioinformatics involves the interpretation of 

omics data, pathway analysis, and identification 

of potential targets associated with cancer.  

• Outcome: Bioinformatics analysis contributes 

to the selection of relevant molecular targets for 

molecular docking studies and guides the 

overall strategy for identifying plant 

compounds with anticancer properties.  

  

 
Figure 7: Integration Bioinformatics Tools 

  

3.4 Data Integration and Mining:  

• Purpose: Integration of diverse datasets from 

various sources, including chemical databases 

and biological repositories.  

• Methodology: Computational techniques for 

data integration and mining are employed to 

extract relevant information on the chemical 

properties, bioavailability, and known activities 

of plant compounds.  

• Outcome: The integrated data provide a 

comprehensive foundation for the subsequent 

computational analyses, facilitating a more 

holistic understanding of the potential 

anticancer properties of the plant compounds.  

  

 
Figure 8: Data Integration in Data Mining 

 

Specify the criteria for selecting plant compounds  

In "Computational Models Generation for 

Designing of Plant-Based Anticancer Agents," plant 

molecules matching particular criteria are carefully 

selected. Ethnopharmacological significance favors 

plants with a traditional medicine background, notably 

for cancer treatment. Based on biological activities, 

substances with anticancer characteristics in the 

literature are included. We seek diverse chemical classes 

to ensure a broad molecular range for computational 

analysis and increase the possibility of discovering novel 

anticancer drugs. Selecting substances that are readily 

available for experimental validation is based on 

availability and source. Compounds with good safety 

profiles are prioritized. Structurally complex chemicals 

that may interact uniquely with cancer targets are 

preferred. Compounds must meet target specificity, 

bioavailability, and druglikeness criteria to be developed. 

Finally, computational feasibility favors chemicals 

suitable for investigation analytical procedures. The 

study uses these criteria to gather a varied and promising 

set of plant chemicals for computer modeling to find 

effective plant-based anticancer medicines.  
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Describe how the anticancer properties were assessed  

The evaluation of anticancer qualities in the 

article "Computational Models Generation for Designing 

of Plant-Based Anticancer Agents" requires the 

integration of computational methodologies in a 

methodical manner. For the purpose of predicting the 

interactions between certain plant chemicals and cancer-

related molecular targets, molecular docking studies are 

utilized. These studies provide insights into the probable 

binding affinities of cancer-related molecules. It is 

possible to make predictions about the anticancer 

potential of plant compounds by using machine learning 

models that have been trained on datasets that include the 

chemical and structural features of botanical substances. 

Putting the computational findings into context within 

the setting of cancer-related pathways is made easier 

with the incorporation of bioinformatics technologies. 

The trustworthiness of the computational predictions is 

further improved by the process of validation against 

experimental data and statistical studies. A thorough 

awareness of the possible influence that plant 

compounds may have on molecular targets and pathways 

associated with cancer is provided by this holistic 

approach, which not only prioritizes plant compounds 

based on their projected anticancer efficacy but also 

provides a comprehensive understanding of the potential 

impact that these compounds may have.  

 

Plant-Based Anticancer Agents  

Bioactive chemicals obtained from plants can 

inhibit or reduce cancer cell development. Oncology is 

interested in these medicines due to their various 

chemical structures and methods of action. Plants are 

rich in secondary metabolites such alkaloids, flavonoids, 

terpenoids, and polyphenols, which have many 

pharmacological effects, including anticancer 

characteristics. These plantderived chemicals are studied 

for their ability to disrupt cancer-related cell cycle 

regulation, apoptosis, angiogenesis, and metastasis. 

Traditional pharmacological methods and current 

computational methods are used to identify and optimize 

plant-based anticancer medicines that may be more 

effective and less harmful. The study of plant-based 

anticancer medicines is part of an increasing interest in 

combining traditional medicine with modern drug 

discovery.  

 

 
Figure 9. Plant-derived anticancer agents 

 

Computational Models Generation  

Generating mathematical or computational 

models to simulate and forecast complicated systems, 

phenomena, or processes is computational model 

generation. In "Computational Models  

 

Generation for Designing of Plant-Based 

Anticancer Agents," mathematical frameworks or 

algorithms are used to anticipate plant chemicals' cancer 

cell growth inhibitory effects. These models use 

molecular docking, machine learning, and 

bioinformatics to analyses massive plant chemical 

datasets, understand their interactions with cancer-

related molecular targets, and rank candidates for 

experimental validation. The goal is to use computational 

methods to speed drug discovery, find promising plant-

based anticancer chemicals, and develop novel and 

effective therapy regimens. These computational models 

efficiently screen and prioritize anticancer drugs, 

speeding up the drug discovery pipeline.  
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Figure 10: Architecture of the computational model 

  

RESULTS AND DISCUSSION  
Ligand-based drug design is inherently a 

complicated problem as this approach is restricted to 

considering only one side of the actual biochemical 

process. Receptor molecules and/or ligands have often 

been shown to go through substantial conformational 

changes in order to promote their interaction [71-75]. 

More current methodologies include several 

conformations during model creation, whereas earlier 

pharmacophore approaches generally did not account for 

ligand conformational flexibility by employing just 

minimal energy conformations of the ligands. Even 

while these approaches provide a great deal of 

improvement, they are still constrained by the fact that 

they involve a narrow range of conformations and need 

ligand alignment. By include all ligand conformations 

that are available and using the overlap of probability 

distributions of pharmacophore characteristics in model 

creation, the CSP approach essentially gets around these 

restrictions. Furthermore, physicochemical 

characteristics may be easily integrated using the 

CSPSAR approach. Several research conducted in our 

labs and by other scientists have shown the usefulness of 

this strategy.   

 

It is clear that ligand-based drug design is an 

effective method for learning about the properties of 

ligands that are critical to their biological activity in the 

absence of the receptor structure. Examining a 

therapeutic target's ligands' structural and physico-

chemical characteristics may reveal the kinds of 

interactions crucial to the desired pharmacological 

response. Furthermore, the methodology may forecast 

distinct chemical structures with properties that facilitate 

the interaction with the target molecule. As previously 

indicated, there are several ways to approach the process 

of ligand-based modeling. Nevertheless, it is highly 

recommended that one has a solid understanding of the 

underlying idea behind the chosen technique in order to 

properly apply these methods to complex biological 

systems.  

 

CONCLUSION AND FUTURE SCOPE  
In conclusion, there is a lot of potential to 

advance drug discovery and development via the use of 

computer models in the creation of plant-based 

anticancer medicines. The drug development process has 

been optimized by the systematic identification of 

promising therapeutic compounds made possible by the 

synergy between medicinal plant research and 

computational techniques. Future work on improving 

and verifying computational models and integrating 

cutting-edge technologies like machine learning and 

artificial intelligence will be focused on improving 

prediction accuracy. Computational biologists, 

pharmacologists, and botanists working together will 

increase the number of medicinal plants in the database 

and improve the models to include more bioactive 

components. Furthermore, by combining virtual 

screening with lead optimization using these models, it 

will be possible to identify attractive candidates for 

experimental validation more quickly, leading to more 

effective and focused anticancer tactics. The 

manufacture and testing of anticipated compounds will 

become more efficient as technology advances, saving 

time and money on medication development. All things 

considered, the combination of plant-based drug 

discovery with computer modeling not only constitutes a 

recent success, but also paves the way for a creative 

future in the search for potent natural anticancer 

medicines.  
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