
EAS Journal of Radiology and Imaging Technology 
Abbreviated Key Title: EAS J Radiol Imaging Technol 
ISSN: 2663-1008 (Print) & ISSN: 2663-7340 (Online)  

Published By East African Scholars Publisher, Kenya 

Volume-6 | Issue-2 | Mar-Apr-2024 |                                                        DOI: 10.36349/easjrit.2024.v06i02.003 

*Corresponding Author: Wong Kennedy      19 

Westmead Hospital, Cnr Hawkesbury Road and, Darcy Rd, Westmead NSW 2145, Australia  

 

 

Review Article  
 

 

Integration of Artificial Intelligence into Chest Computed Tomography   
 

Wong Kennedy1* 

1Westmead Hospital, Cnr Hawkesbury Road and, Darcy Rd, Westmead NSW 2145, Australia 
 

 

Article History 

Received: 02.03.2024 

Accepted: 08.04.2024 

Published: 10.04.2024 

 

Journal homepage: 

https://www.easpublisher.com    
 

Quick Response Code 

 
 

Abstract: The integration of Artificial Intelligence (AI) in radiology, especially for 

chest computed tomography (CT) scan analysis, marked a significant advancement 

in medical diagnostics, aiming to improve patient care and streamline the workflow 

for radiologists. This review article examined the role of current AI technologies, 

including machine learning (ML), deep learning (DL), convolutional neural 

networks (CNN), and radiomics, in enhancing the detection and characterisation of 

lung diseases. These technologies are instrumental in identifying complex patterns 

within imaging data and constructing more informed decisions regarding disease 

severity, progression, and potential treatment options. Deep learning and CNN have 

demonstrated effectiveness in analysing the intricate details present in chest CT 

scans, offering a high degree of accuracy. Radiomics complements these methods 

by extracting quantitative features from medical images, providing deeper insights 

into disease characteristics that are not visible through standard imaging techniques. 

The application of AI has shown promise in improving the diagnosis and 

management of interstitial lung diseases and lung cancers, contributing to the 

development of personalised treatment plans. However, this review also highlights 

limitations, such as small sample sizes in studies, which may impact the 

generalisability of AI applications in this field. Despite these challenges, the 

ongoing incorporation of AI into radiological practices is anticipated to significantly 

enhance the accuracy and efficiency of lung disease diagnostics, setting a 

foundation for future research and improvements in clinical practice.  

Keywords: Radiology, respiratory, artificial intelligence, machine learning, deep 
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INTRODUCTION 
Artificial intelligence (AI) is the engineering 

and deployment of computational frameworks that 

emulate human cognitive functions by integrating 

computation methodologies including machine learning 

(ML), deep learning (DL) and convolutional neural 

network (CNN) (Saba et al., 2019). In recent years, there 

has been increasing research into the integration of 

artificial intelligence into the imaging chain and 

radiology reporting process, with the goals of improving 

patient care and radiologist workflow (Hanada et al., 

2022. Gandhi et al., 2023. Cobo et al., 2023). These 

improvements were achieved through the ability of AI to 

identify subtle and complex nodule or interstitial patterns 

in imaging data, which provided insights into disease 

severity and progression. As a result, the patient received 

earlier intervention, personalised treatment plans, and 

ultimately, better lung oncological outcomes (Avanzo et 

al., 2020). 

 

 

 

Machine Learning 

Machine learning is a subset of artificial 

intelligence focused on developing systems that learn 

from data, identify patterns, and make decisions with 

minimal human intervention. This involved algorithms 

and statistical models that allowed computers to perform 

specific tasks by generalising from trained models. 

Machine learning is categorised into supervised and 

unsupervised learning. In supervised machine learning, 

the model learnt from a dataset that included both the 

inputs and the desired outputs. Whereas in unsupervised 

learning, the datasets do not have labelled responses and 

the model identified inherent patterns (Saba et al., 2019). 

 

Deep Learning 

Deep learning is a subset of machine learning 

that mimics the human brain in processing data and 

creating patterns for use in decision-making (Saba et al., 

2019). This utilised artificial neural networks with 

multiple layers that allowed the model to learn from 

unstructured data. Likewise, deep learning algorithms 

can learn and improve from experience with minimal 

human input. This enabled deep learning models to 
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handle complex tasks such as image recognition in 

radiology. 

 

Convolutional Neural Network 

A convolutional neural network (CNN) is a 

class of deep learning algorithms primarily used in 

processing structured array data. CNN simulated the 

biological processes of the visual cortex in recognising 

patterns and structures in radiological images. One or 

multiple convolutional layers adaptively learn spatial 

hierarchies of features of lung disease pathology (Saba et 

al., 2019). These layers involved learnable filters that 

scan the image to capture specific features of lung 

nodules or interstitial changes and identify pathology by 

comparing images to the training model. This enabled 

the algorithm to have visual perception or “computer 

vision” (Escotta et al., 2022). CNN can be integrated into 

radiomics to extract large amounts of quantitative 

features from medical images using data-characterisation 

algorithms. Radiomics attempts to uncover disease 

characteristics, such as shape, intensity, texture and 

surrounding environment, that are difficult or impossible 

to detect through standard image interpretation. 

Consequently, radiomics allowed radiologists to gain a 

comprehensive understanding of tumour behaviour, and 

disease progression and predict response to treatment 

outcomes. Radiomics is comprised of several steps, 

starting with image acquisition and followed by image 

segmentation; identifying a region of interest, feature 

extraction; applying filters to extract features of the 

disease and analysis; prediction is made about patient 

outcomes or response to therapy (Papanikolaou et al., 

2020). 

 

Computer Vision 

Computer vision utilises deep learning 

algorithms and convolutional neural networks to analyse 

images of chest CT (Choi et al., 2022). The algorithm 

employed multiple filters to process images, detecting 

and learning different features by systematically 

scanning the entire image. A filter, moving across the 

image from left to right and top to bottom, is used to 

search for specific patterns. When a feature matching the 

filter's pattern is found, it is recorded in a feature map 

(Iglesias et al., 2021). 

 

Notable algorithms included AlexNet and 

ResNet. In 2012, AlexNet a DL algorithm won the 

ImageNet Large Scale Visual Recognition Challenge, it 

demonstrated a 61% improvement in error rate compared 

to the previous year's winning algorithm (Chassagnon et 

al., 2023). Additionally, in 2015, ResNet the winning 

algorithm of the competition achieved an impressive 

error rate of 3.6%, surpassing human-level performance 

(Hwang et al., 2020). Scalable Open Framework for 

Integrated Analysis (SOFIA) is a framework designed 

for integrated analysis, used in radiology to manage and 

analyse imaging data, particularly assessing fibrotic lung 

disease patterns in HRCT (Walsh et al., 2022). In 2022, 

a study performed by Walsh et al., assessed the SOFIA-

PIOPED deep learning algorithm's prognostic utility in 

forecasting transplant-free survival for patients with 

fibrotic lung disease, using a dataset from a national IPF 

registry. The algorithm, designed to detect UIP-like 

features from HRCT scans, was tested on a novel 

imaging dataset from various institutions, showing 

uniform prognostic significance across different patient 

subgroups, regardless of the CT pattern or underlying 

disease cause. Specifically, the SOFIA-PIOPED UIP 

probability categories were the only predictors of 

transplant-free survival in bivariable analysis with 

radiologist PIOPED UIP probability categories (Hazard 

Ratio [HR], 1.45; P < 0.0001; 95% Confidence Interval 

[CI], 1.33–1.59) and remained significant when adjusted 

for total interstitial lung disease (ILD) extent (HR, 1.31; 

P < 0.0001; 95% CI, 1.19–1.44). In multivariable 

analysis adjusting for age, sex, and total ILD extent, 

these categories persisted as significant predictors. 

Adjustments for disease severity measures, including 

percent predicted Forced Vital Capacity (FVC), 

Diffusing Capacity for Carbon Monoxide (DlCO), 

composite physiologic index, and gender-age-

physiology stage, did not alter the outcome, emphasising 

the algorithm's robust prognostic capability. The goal of 

computer vision is to enhance diagnostic accuracy and 

provide objective assessments of fibrotic lung diseases, 

such as idiopathic pulmonary fibrosis (IPF), by 

identifying patterns. 

 

Deep Learning Image Reconstruction 

Deep learning algorithms are being employed in 

reconstruction methods of ultra-low dose CT (ULD-CT) 

chest imaging to overcome image noise associated with 

traditional methods. The absorbed doses of low-dose CT 

scans are 1-2 mSv and use iterative reconstruction which 

significantly lowers image noise and enhances over 

image quality compared to filtered back projection. 

Whereas ULD CT reduces radiation levels to 0.13-0.49 

mSv while utilising DLIR. This is comparable to single 

chest radiography which the dose ranges 0.03-0.1mSv. 

Jiang et al., 2022 demonstrated deep learning image 

reconstruction (DLIR) performed better than adaptive 

statistical iterative reconstruction-V (ASIR-V) in noise 

levels, lung nodule detection rates, and measurement 

accuracy. DLIR showed the lowest noise at 51 HU ± 4, 

achieving a 13.8% noise reduction from the baseline of 

filtered back projection (FBP) level. This surpassed 

ASIR-V-80% noise reduction of 11.3% from the baseline 

of FBP level. Likewise, the air background noise was 

lowest for DLIR-H reduction of 34.7% which greater 

reduction than ASIR-V-80% (16.6% [P > .001]), and 

nearly matching the CECT level's noise reduction 

(36.0% [P > .99]). DLIR demonstrated an enhanced lung 

nodule detection rate over FBP (75.8% compared to 

62.5%; P < .001) and ASIR-V (73.3%; P = .18). It also 

surpassed ASIR-V in nodule size accuracy for both 

lengths (6.2% versus 9.2%; P < .001) and volume 

measurements (14.4% versus 21.0%; P < .001). 

Additionally, DLIR identified a greater number of 

nodule features associated with malignancy than ASIR-
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V did, capturing 81.5% (225 out of 276 features) versus 

ASIR-V's 77.5% (214 out of 276 features); P = .04. 

 

Radiomics 

By describing the characteristics of lesions 

through the extraction of medical images, radiomics can 

predict the growth rate of nodules help prognostic 

analysis distinguishing benign from malignant nodules 

and predict the nodule's response to treatment, based on 

the gene expression pattern and the microenvironment. 

The radiometric model can be combined with a clinical 

model to provide a more accurate predictor model. Sun 

et al., 2023 investigated the prediction of the growth of 

persistent ground glass nodules (GGN) in a retrospective 

study where CT images were randomised into training 

(70%) and validation sets (30%) which helped develop 

models. They concluded the predictive model that 

integrates radiomics with clinical characteristics (such as 

size, location, and age) achieved the highest Area Under 

the Curve (AUC) scores in both training and validation 

datasets (AUC = 0.843 and 0.824, respectively). This 

radiomics-based model surpassed the performance of the 

clinical-only model in both datasets (AUC scores of 

0.836 vs 0.772 and 0.818 vs 0.735, respectively). 

Additionally, the radiomics signature's performance 

closely matched that of the combined nomogram model, 

as indicated by the Delong test results for the training (P 

= 0.09) and validation (P = 0.37) sets. These results were 

consistent with Zhang et al., who developed and 

validated a predictive model for preoperative 

differentiation of pulmonary nodular mucinous 

adenocarcinoma (PNMA) from pulmonary tuberculoma 

(PTB) in retrospectively analysed. They determined that 

combined radiomics and clinical model provided the best 

performance in the prediction model to differentiate 

PNMA from PTB, with ROC-AUC of 0.940, 0.990 and 

0.960 in training, test and external validation group 

respectively. 

 

CONCLUSION 
The integration of artificial intelligence into 

medical imaging and diagnostics marks a significant 

advancement in enhancing patient care and optimising 

radiologist workflows. Through sophisticated analysis of 

medical images, AI techniques such as radiomics and 

deep learning image reconstruction can improve 

precision in detecting and differentiating interstitial lung 

diseases and lung cancer. Additionally, innovations like 

DLIR have been demonstrated to improve the accuracy 

and efficiency of ultra-low-dose CT imaging in 

demonstrating superior noise reduction and nodule 

detection rates. Combined radiomic and clinical models 

performed better than radiomic or clinical models alone. 

However, there are limited studies investigating the 

application of AI models in detecting lung diseases. Most 

of the research employed limited participant numbers in 

their training and validation groups which restricts the 

applicability of their findings. Despite AI models in their 

infancy stages, this research contributes to the ever-

growing database of AI applications in chest computed 

tomography. They set a precedent for future research into 

integrating AI to improve patient care. 
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