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Abstract: This paper analyzes a batch arrival infinite-buffer single server variant working vacation queueing system
wherein customers arrive according to a Poisson process and the server is subject to breakdown. As soon as the system
becomes empty, the server takes working vacation. The service times during regular busy period, working vacation
period, vacation times, breakdown times and repair times are assumed to be exponentially distributed and are mutually
independent. During working vacations the customer may renege due to impatience. We derive the probability generating
function of the steady-state probabilities and obtain the closed form expressions of the system size. In addition, we obtain
some other performance measures and monotonicity with respect to K.

Keywords: Queue, Batch arrival, Geometric distribution, Reneging, Variant working vacations, Server breakdowns,
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1. Introduction

Queueing systems with server vacation have been investigated extensively due to their wide applications in
several areas including computer communication systems, manufacturing and production systems. Vacation models are
useful in systems where the server wants to utilize the idle time for different purposes. For more detail on this topic the
reader may refer to the surveys of Doshi [6], Takagi [23] and Tian and Zhang [24].In classical vacation queues, the server
completely stops service during the vacation period. However, there are numerous situations where the server remains
active during the vacation period which is called working vacation (WV). Servi and Finn [22] introduced this class of
semi-vacation policy. They studied an M/M/1 queue with multiple working vacations (MWVs). Baba [2] analyzed a
GI/M/1 queue with MWV . Wu and Takagi [29] generalized Servi and Finn’s [22] M/M/L/WV queue to an
M/G/1/\WV queue. Banik et al. [4] studied a GI/M/1/N WV queue with limited waiting space. Liu et al. [18] derived
the stochastic decomposition results in an M/M/1 queue with WV .

The bulk input queue models have extensive applications as in computer networks and communication systems

the units arrive in batches. For the batch arrival queues, Xu et al. [30] investigated a bulk input M */M/1 queue with
single working vacation. The probability generating function (p.g. f) of the stationary system length distribution is

derived using quasi upper triangular transition matrix of two-dimensional Markov chain and matrix analytic method. The
stochastic decomposition structure of system length has been derived which indicates the relationship with that of the

M */M/1 queue without vacation. A similar analysis has been carried out in Baba [3] for M */M/1 queue with MWV
and Liu and Song [19] for M */M/1 queue with working breakdown. A Steady state analysis and computation of the
GI*/MP®/1/L queue with multiple working vacation and partial batch rejection is presented by Yu et al.[33] and
Goswami and Vijaya Laxmi [10] analyzed the GI*/M/1/N queue with single working vacation and partial batch

rejection. Recently, a retrial queue with working vacation for the batch arrival Geo* /Geo/1 queue has been analyzed by
Upadhyaya [25] by considering the general early arrival system.

The concept of variant multiple vacation policy is relatively a new one where the server is allowed to take a
certain fixed number of consecutive vacations, if the system remains empty at the end of a vacation. This kind of
vacation schedule is investigated by Zhang and Tian [35] for the Geo/G/1 queue with multiple adaptive vacations. Ke
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[13] analyzed the operating characteristic of M 1/G/1 system with a variant vacation policy with balking. Banik [5]
studied the infinite-buffer single server queue with variant of multiple vacation policy and batch Markovian arrival
process by using matrix analytic method. The literature related to this kind of vacation can be identified in papers by Ke
and Chang [14], Ke et al. [15] and Wang et al. [28]. In case of WV , Zhang and Hou [36] analyzed a steady state renewal
input GI/M/1/N queue with a variant of multiple working vacation by using matrix analytic method. Gao and Yao [7]

have developed the variant working vacation (VWV) policy for the M*/G/1 queueing system, where the server

operates a randomized vacation policy and takes at most J working vacations when the system becomes empty. A finite
buffer M/M/1 queue with VWV and balking and reneging has been analyzed by Vijaya Laxmi and Jyothsna [26]. They
obtained the steady state probabilities using matrix form solutions.

In real-life, many queueing situations arise where customers tend to be discouraged by a long queue. As a result,
customers after joining the queue depart(renege) without getting service. Palm’s [20] work seems to be the first to
analyze the act of impatient customers in an M/M/c queueing system, where the customers have independent
exponential distribution sojourn times. Altman and Yechiali [1] presented the analysis for impatient customers in
M/M/1,M/G/1 and M/M/c queueing models with server vacations. An M/M/c queue with impatient customers has
been studied by Yechiali [32]. Perel and Yechiali [21] considered a 2-phase (fast and slow) Markovian random
environment with impatient customers. Yue et al. [34] analyzed the M/M/1 queueing system with impatient customers
and the variant of multiple vacation policy and obtained the closed-form expressions of the mean system sizes when the
server is in different states using probability generating functions. Kim and Kim [17] analyzed a multi-server batch

arrival M */M/c queue with impatient customers.

Generally, most of the articles in queueing theory deal with systems wherein the servers are reliable, i.e., they do
not have the possibility of breakdowns. However, in practice, we often meet the situation where server may breakdown.
Phenomena of server breakdowns can be encountered in computer, communication networks, soft manufacturing
systems, etc. Grey et al. [[8], [9]] proposed queueing models with service breakdowns. In [8], they analyzed a multiple
vacation queueing model, where the service station is subject to breakdown while in operation, whereas, in [9] they
considered a general queueing model in which the server may experience several different types of breakdowns. Ke [12]
derived some important system characteristics for the N -policy M/G/1 queueing system with server vacations, startup,
and breakdowns. Wang et al. [27] considered an optimal control of N -policy M/G/1 queueing system with server
breakdowns and general startup times. Ke and Lin [16] applied the maximum entropy approach to investigate the N -

policy M™/G/1 queueing system with an un-reliable server and a single vacation. Jain and Jain [11] studied WV queue
with multiple types of server breakdowns, where each type of breakdown requires a finite random number of stages of
repair. Recently, Yang and Wu [31] have investigated an N -policy M/M/1 queueing system with WV and server
breakdowns.

In real life, there are many situations where customers arrive in groups, e.g., customers arrivals in super markets,
restaurants, orders in manufacturing and voice calls in communication centers. In this paper, we consider an M */M/1
queue with variant working vacations where customers may renege due to impatience and server may breakdown during
busy period. On arrival, customers arrive in batches according to a Poisson process and arrival batch size X is a random
variable with probability mass function P(X =1)=b,, | =1,2,---. If there is no customer at the instant of a service

completion, the server begins a WV of random length. During the vacation period, the arriving customers are served
generally at a lower rate. When a WV ends, the server inspects the system and switches to normal busy period, if there
are customers in the queue; otherwise, takes another WV and continues so till K consecutive vacations have been taken.
One may note that this VWV generates MWV when K — oo and single working vacation (SWV) when K is equal to
1 and after the end of the K th vacation, the server switches to normal busy period and stays idle or busy depending on
the availability of the customers in the system. Further, customers become impatient and renege when the server is on
vacation. However, the server may breakdown during the regular busy period and immediately sent for repair which
causes interruption in service. If the repair is completed, then the server returns to service immediately. We have obtained
the explicit expressions for the steady - state probabilities by using probability generating functions, Various performance
measures and the monotonicity on some performance measures with respect to K are discussed.

The rest of the paper is organized as follows. In section 2, model description is given. In Section 3, we have obtained
the probability generating functions of the stationary analysis of the system and the closed-form expression of the average
system size when the server is in different states are derived. The closed-form expressions of the performance measures,
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monotonicity with respect to K are presented in Section 4. Some numerical results are presented in the form of table and
graphs in Section 5. Finally, Section 6 concludes the paper

2. Description of the Model

We consider an M */M/1 queueing system with variant working vacations, reneging and server breakdowns during
busy period, wherein customers arrive in batches according to a Poisson process with rate A . The arrival batch size X
is a random variable with probability mass function P(X =1)=Db,,  =1,2,---. The service is provided by a single

server with exponential service rate ¢ .

The server is subject to breakdowns during busy period with a Poisson breakdown rate /3. Whenever the server
fails, it is immediately repaired at a repair facility, where the repair times have exponential distributions with rate y. A

customer who arrives and finds the server busy or broken down must wait in the queue until the server is available.
Although no service occurs during the repair period of a broken server, customers are allowed to join the queue. In case
the server breaks down when the service is in progress, he is sent for repair and the customer who has just being served
should wait for the server back to complete his remaining service.

At the end of a service, if there is no customer in the system, the server begins a WV of random length which is
exponentially distributed with parameter ¢ During a WV service is provided according to a Poisson distribution with
parameter ¢ . If the server finds customer at a WV completion instant, it returns to regular busy period; otherwise, the

server takes WVs sequentially until ¢ K * consecutive WVs are complete; after which the server switches to normal busy
period staying idle or busy depending on the availability of the customers in the system.

During WV customers become impatient. That is, whenever a batch of customers arrives during WV , an “
impatience timer” T is activated, which is exponentially distributed with parameter ¢ . During WV , if the service does

not commence before the time T expires, the customer abandons the queue and never returns. Since the arrival and
departure of an impatient customer without service are independent, the average reneging rate of a customer is given by

No , where N denotes the number of customers in the system. If the server is available in WV before the time T
expires, the customer is served with rate ¢ . If WV finishes before the impatient timer expires, server switches to
normal working period and the customer is served with rate 4.

3. Analysis of the Model
In the next subsection, we develop the difference equations for the probability generating functions (p.g.f.s)
of the steady state probabilities and solution of the differential equations.

3.1. Steady state Equations
Attime t, let L(t) be the number of customers in the system and J(t) denote the status of the server, which is
defined as follows:

j, the serveris on (j +1)" working vacationat time t for j=0,1,...,K -1,
J(t) =<K, the serveris idle or busy at time t,
bd, the serveris in breakdown state during busy period at time t.
The process {(L(t),J(t)),t >0} defines a continuous-time Markov process with state space
Q={n,j):n>0,j=0,1,...,Kand j =bd}
Let 7, ;= !Lnl {L(t)=nJ(t)=j},n>0,j=01,...,Kand j=hd, denote the steady state probabilities of the

process {(L(t), J (t)),t > O}. Using Markov theory, the set of balance equations are given below:
(A+P)7yo = (§ +a)my g+ pum @
A+od+{+a)m = Abm,,+ (5 +2a)m,,, )
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A+p++na)rm, = ﬂ,meﬁn_m’O +(@+(n+)a)7,,, o N22, (3)
m=1
A+P)my; =(C+a)m j +dmy 4, 1< J<K -1, (4)
A+o++a)m ;= +(§+2a)7,;,1< J<K -1, (5)
(A+p+C+na)m, = AD bor, o+ (C+(M+ D))z, ;1< j<K-1,n>2, (6)
m=1
Aok = P01 (7)
K-1
A+ p+ P)m = Ay + +¢Z7[1,j + V7 b » (8)
j=0
n K-1
(ﬂ’—}_/u—i_ﬂ)ﬂ.n,K = /’izbmﬂ-n—m,K +IU7Z.n+1,K +¢Zﬂ-n,j +77z-n,bd , N2 2’ (9)
m=1 j=0
(A+7)70s = Bk (10)
n-1
(A+ ) Topa = AD Py mps + Braks N2 2, (11)
m=1

and the normalizing condition is
o K s}
ZZﬂ'M + Z/Z’n’bd =1 (12)
n=0 j=0 n=1
The state probabilities are obtained by solving the equations (1) to (11) using (p.g.f.S). Let us define the p.g.f of

T, as
G(2)= i;zn’jz”,OS z<1,j=0.1,..,K,
h=0
Gy (2) = gﬁn'bd 2"
Define Gj(z) = %Gj(z) = nZi;nz”"lﬁnyj,j =0,1,..,K and j=bhd, and p.g.f of the arrival batch size X is

G(2)=>hz' |z]<Llwith G(1) =D b =1.

1=1

We assume that the arrival batch size X follows a geometric distribution with parameter q , that is,
P(X =I)= (1—q)"1q,0 <q<1(1=12--).Itis easy to observe that

-
G(z)=—1T—.
(2) -0z (13)

Now, multiplying equations (1), (2) and (3) by z", and summing over all possible values of N and re-arranging
the terms, we get

az(1-2)Gy(2) +(A2(G(2) 1) = (¢ + )2+ )Gy (2) = (1= 2)mo o — piz 7y - (14)
Similarly, from equations (4), (5) and (6) and (7), (8) and (9), respectively, we get
az(1-2)Gj(2) + (12(G(2) -1) - (¢ + )2+ )G () = ¢ (1- )7y ; — ey 4, LS JS K =1
(15)
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(42(G(2)-1)+(1-2) - p)Cy (2) + ¢ZZG,- (2)= (u(l=2)=pr)7y

K o (16)
+ Z{Uﬂ-l,K + ¢z7[0,j } — 772Gy (2)-
j=0
And from equations (10) and (11), we obtain
[4(1-G(2)+ 7161 (2) = BlG/ (2) - 7.} a7
By taking z =1 in equations (14) and (15), we obtain
#G, (1) = HTT (18)
and
Gj Q)= ﬂoyjfl.lﬁ J<K-1, (19)
which implies that
K-1 K-1
¢ZGJ' (1) = M7t + ¢Zﬂ0,j—l' (20)
i=0 j=1
Equation (14) can be written as
, A(G(2)-1 +
Go(2)+ C@)-1)_ d+¢ + ¢ Go(z):iﬂo,o_Lﬂl,K- (21)
a(l-z2)  a(l-2) az(l-2) 1074 a(l1-2)
The above equation is a linear differential equation whose solution is given by
s
1-(1-qg)z)“*®
Gy(z) = L= [5 (D)0~ Iz(z)m} @)
= = o a
(1-2)*z~
where
2 A 6 o<,
1(2) = [(1- (=@ D (1-x)7x dx
° (23)

1,(2) = j(1- (1—q)x)“& (1— x)g’lxgdx.

Proceeding similarly, equation (15) gives

G,(2)= (1‘(1“4););(”) F L@, L 1,27, 4,13 j<K-1. (4
(1-2)*z« “

Our aim is to get 7z, and 7, ; in terms of 7, ,. We observe that z=1 and Z = O are the roots of the denominator

of the right hand side of equations (22) and (24), we have z =1 and Z =0 must be the roots of the numerator of the
right hand side of those equations. Therefore
_¢ L@

T = T 25
1,K ,U |2(1) 0,0 ( )
and
Ty, =? IIZ((i)) 7o 1S J<SK -1 (26)
1
Equation (26) can be written as
7y =Clmy, 1< <K -1, 27)
where C = zlz—(l) . Using equations (7) and (27), we obtain
¢ 11
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Ko = %C“nao. (28)
Using equations (25) and (27) in equations (22) and (24) respectively, we get
-2
1-(1-g)2)“¢9 1, (1

G,(2) = L= {u(z) 0 Elﬂg . @)

(1-2)*z~

A
_(1-(1-q)2)“"? | 1,(1) ¢ -

Gi(2)= iz Ii(l)l (2)-1,(2) CJ 0 1S jSK =1 (30)

(1-2)“z¢«

Next, we derive the probabilities 77, and 7, . Let G;(1) = ZEM, for j=0,1,..., K. From equations
n=0
(29) and (30), using L’Hospital rule, we get

G;(1)=C''7y, j=01,...,K-1L (31)
Using equations (17) and (20), we obtain

#[2(1-G@) + 7D [6,(2) -G, ()]~ Ny

Gy (2) = "=[°) ) , (32)
where '
N, = (1(1-2) - f2)A(1-G(2)) + u(1-2)y
and

D,(2) = 22(1-G(2)[A(1-G(2)) + B+ 7]~ u(1-D)[A(1-G(2)) +7]
Taking z =1 and applying L Hospital rule, we get
¢7ZG; () + (uy - iﬁG,(l))”o,K

G (1) =—2° :
O e W) )

Since the average number of customers in the system during WV is E[L;] = z i (1). we first derive E[L ]

for ] =0,1,...,K—1. From equations (14) and (18), we have for z =1 and using L Hospital rule

(A+¢)Gy (1) = (AG'(1) - )Gy (1) + ¢z - (34)
Similarly, from equations (15) and (19), we get
(/l+¢)G} 1) =(1G'(D —g“)Gj (@) +§7r0’j ,1=12,...,K-1. (35)
Equations (34) and (35) imply
E[Lj]:G;(l):Mej(lniﬂoj,j:o,l,...,K—l. (36)
a+a¢ a+¢
Using equations (31) and (27), equation (36) can be written as
i1 j
E[L,]=G|(1)= (G'(1)- 42; T =00 KL (37)
a

Therefore, the mean system size when the server is on WV |, denoted by E[va ], is obtained as
= AG'(1)-¢(1-C) | (1-C*
j=0

o0
a+¢ C(1-0)
Substituting equation (38) and (28) in equation (33), we get

(38)
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GK(D{ #AG'()-¢(1-C) (1-C%) ,  (ur-245'(1) gCH}TW (39)
(uy =A(B+y)G'()a+¢) C(1-C) (uy—-A(B+7)G'(1) 4 '
and then from equation (17), we get

Gy (1) = (A7 )G (1) ~ 70 ) (40)
The normalizing condition (12) can be written as

K-1

ZGj(l)+GK (1) +Gyq (1) =1 (41)

j=0

Substituting equations (31), (39) and (40) in (41), we get
_ Muy - A(B+7)G'(1) e +g)n(K)

700 =D, + gura+ HH(K) 2
where
D, = aluy—A(B+7)G'(1)+#luy — S (1-C)(B+7)),
h(K) = (C(1-C))/(1-C¥)
and

H(K)=(C*(1-C))/(1-C").
Substituting equation (42) in equations (28) and (38), we obtain the probability of an idle server and the mean system
size when the server is on WV  as follows:

_ Py =B +7)G' (1) N +$)H (K)

Tox AD, + e+ p)H (K) )
and
_ Muy-A(B+7)G'(1))AG'(1)-£(1-C))
Fllw]= AD, + duer+ PH(K) ' “

Note that E[L, ] represents the mean system size when the server is busy or idle and E[L,4] represents the mean
system size when the server is breakdown and under repair, which can be found from the following theorem.

Theorem 3.1 The mean system sizes during busy / idle and breakdown periods can be expressed as

_ 1/ A
E[L. 1= AE[L,, 1+ A7, — 7|,
(L] (ﬂ7—/1(ﬂ+7)6'(1))( [ 1+ Ao * ¢ O’Kj

and

E[Ly]1=Gp (1) = £|:E[LK]+ iG,(l)(¢E[LWV 1+ /lG,(l)ﬂ-O,K )}
v

(uy = AG'()(B+7))

where

A= [Wz +BUG' (L) +Ay(B+7)(GC"(1)/2)  y(AG' (1)~ (p+< + a))j
(uy =A(B+7)G'(1)) (¢ +2a)

Ay2G' (1) +G"(1) . 4 A = Auy*(2G'(1) +G"(1)) + 28(AG'(1))*
2(¢+2a)h(K) 2uy =G (W) (B +7))

Proof. From Eq. (32), using L’Hospital rule, we obtain

A2:

Available Online: http://www.easpublisher.com/easmb/ 13




Vijaya Laxmi P & P. Rajesh.; East African Scholars Multidiscip Bull; Vol-1, Iss-1 (Aug-Sep, 2018): 7-20

'y — 1 ' San
E[L]=G(1)= 272G D1 7)) $y(uy -G (1)(ﬂ+7));G,—(1)
| 976" W)(B+7)+ 24y’ + BUG (L)Y )Z:le(l) (45)
2(uy =2G'Q)(B+ 7)) :
/1/17’ (2G'(1)+G"(1)) +2B(AG'(1))° -
2(uy =G W)(B +7))’
where G//(1) is obtained by differentiating G, (z) twice at z=1 for j=0,1,..., K —1. Differentiating twice (13)

and (14) and taking z =1, we get

Gi(1) = (2(AG' (D) - (¢ +¢ +a))Gj (1) + 1(2G'(1) +G"(1)G;()/(¢ + 2cx).  (46)

Substituting Eq. (46) in (45), we obtain
EL.]= q{w + UGS W) +A7(B+1)G"(W)2) ,  y(AG' ()~ (¢+{ +a)) jE[va]
(uy = 2(B+7)G'(1)* (W —AG'(1)(B+ 7))@+ 2a)
N oy A(2G'(1)+G"(1)) 1-C* . (47)
20uy-2G'M(B+7)  ($+20)  C(1-C) "
ﬂw (2G'(1)+G"(2)) + 28(AG'(1))° .
2(uy = 2G'(1)(B+7))*
where 7,4, 77, and E[LWV] are calculated by using Egs. (42), (43) and (44). Differentiating Eq. (17) with respect to

Z, taking z =1 and using (33), we get the mean system size when the server is breakdown and under repair E[Lbd]
as,

(48)

zer<1)(¢E[%]+zG'(1)no,K)}

E Lbd :G 1 E[L
[Les]= G (1) = { [Lid+ (uy = 2G'(1)(B+7))

O
From equation (13), we obtain that G'(1) = g =1/q, G"(1) = 2(1-q)/g® and 2G'(1)+G"(1) = 2/q>

and p = (AQ)/u . Therefore, equations (44), (47) and (48) can be written as
Apu(y — p(B+y))up—¢(1-C))

E = ,
= s = o5 1)+ iy~ -CY B+ )+ arlec+ (O]
EL.]= ¢( Yup=(@+<+a) | pay) +SAup) + Ay(B+7) (1~ q)) L]
ﬂ(7—p(ﬁ+7))(¢+2a) (1a(y — p(B+ 7)) (50)
1 { pry  1-C A+t (up) }
Tl =B )| $+20) CA-C) T (= p(Brr)) O
and
ElL]= {E[L | +ﬂp(¢E[LWV]+ﬂpﬂo,K)} -
4 u(y—p(B+7)
Where the probabilities 7z, and 7T, are calculated by using equations (42) and (43) as follows:
. Au(y — p(B+7))(a + #)h(K) 52)
" " Aoy — p(B+ )+ iy~ A-C) B+ 7))+ e+ H(K)]
du(y = p(B+7))a+ HH(K) -

”OK .
 dau(y - p(B+7)) + g My = £ A-C)(B +7))+ uyr{e+¢)H (K)]
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Let L be the number of customers in the system. The mean system size E[L]= E[L,, ]+ E[L]+E[L,] can be
calculated from equations (49), (50) and (51).

4. Performance Measures
In this section, some other performance measures and their monotonicity with respect to K are presented.
* When the system is in state (N, ), N>0, ] =0,1,---, K —1, the rate of abandonment of a
customer due to impatience is N¢r . Thus, the average rate of abandonment due to
impatience (R, ) is given by
K-1

= ZZnomn'j = oE[L,y ] (54)

j=0n=1

* From equation (53), the probability that the server is idle is given by

¢y —p(B+y))(a +P)H(K)
" Ay~ p(B+ )+ Ay ¢ A-CYB+ )+ sarla+ AH(K)]
If we consider K as a continuous variable and take the derivative of 7, with respectto K,

d
we have % < 0 and the inequality follows from the fact that H (K) decreases with K .

Therefore, 7z, is a decreasing function of K.
* Let 71, be the probability when the server is on WV . From equation (31), we have

1-cX
T = ZG() Ca-oy’™ (55)
Substituting equation (42) in (55), we get
2y = p(f+ 7)) +9) R
" Aauly - p(B+ 1) + iy — CA-CYB+ )+ urla+ H(K)]

We see that 7, increases with K because of the decrease of 7, with respectto K.

* The probability of busy server is given by

T, = Zﬂ'n'K =Gy (1) -7y (57)
n=1
Substituting equations (31), (49) and (53) in the above equation, we obtain
(e + WQH (K)+ up—¢ (1-C)] (58)

"o " Dau(y - p(B+ 1)+ HA(uy— L (A=C)(B+ 7))+ upla+ pH (K)]

From the fact that 7, decreases, 7, increasesand in <0 with K, we find that 7,

decreases with K .
* The probability when the server is breakdown and under repair are given respectively, by

Zﬂnbd— (G (1 ”o,K)’ (59)

i 2 Bpp—¢ (1-C)+ (o + P)(LGH (K)] o)
* " ey - p(B+ D)+ oy —CA-C)B + 1)+ i+ HH(K)]

« The probability when the system is empty and the server is on WV is given by

K-1
_ _ (1 c* )
= = . 6
T JZ:(;”OJ (1-C) To,0 (61)
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Using equation (55) in (61), we get
7, = Cryy - (62)

» The average number of customers in the queue E[L] is given by

K o 0
E[Lq] = ZZ(n _1)7[an +Znﬂ.n’bd 11 (63)
j=0n=1 n=1
and it can be written as
E[L,]= E[L]-[1- (7. + 7o + 70 )} (64)

5. Numerical Analysis

In this section, to study the parameter impact on the system performance, numerical computations are carried
out and a few of those are presented in the form of tables and graphs. For example, a flour mill, where the machine grinds
the grain like rice, wheat, pulses etc., into flour. Carbs/orders arrive in batches according to a Poisson process with rate

A . The arrival batch size X is a random variable with probability mass function P(X =1)=b,, 1 =1,2,---., Flour
times follows an exponential distribution with rate £ . When the service completed, if there are no orders in queue the

flour machine performs preventive maintenance with exponential distribution with rate ¢ during this maintenance

period the flour machine still works at a lower rate £ . When the maintenance ends, if there are orders in the queue, the
machine will come into normal flour rate g, otherwise; it takes another maintenance task and continuous a finite

consecutive maintenance tasks. Maintenance tasks during maintenance are lubrication like oil and grease etc., into
machinery parts.

During maintenance period the orders may renege due to impatience. Whenever orders arrive during
maintenance period an impatience timer is activated with exponential distribution. If the service does not commence
before an impatience timer, then the orders renege from the queue with rate N and never returns, where N denotes
number of orders in the queue. If flour machine is available during maintenance period before the timer expires, the

orders will be served with rate £ . If maintenance period ends before an impatience times expires, then machine changes
to normal service rate. A break down of the flour machine may happen at any time according to Poisson distribution with
rate ﬂ during busy period. Whenever the flour machine undergoes breakdown, it is sent for repair immediately. The
repair times follow exponential distribution with rate . During repair period, the flour machine will not work until

repair is completed and orders still arrive according to Poisson process. Once repair is completed, the flour machine
becomes active and resumes its service.

We  consider the  parameters as A =18, ©u=6.0, K=5 a=05 {=12, ¢=3.0,
£ =0.8,y=8.5and q=0.7 for all the figures and tables, unless they are considered as variables or their values are

mentioned in the respective figures and tables. Table 1 gives the effect of variant working vacation K on different
performance measures. The performance measures 7, , 77,y and 7, are decreasing and 7, , 7., E[L, ] and R,

are increasing function of K, as it should be.

Table 1: Effect of K on different performance measures

ﬂO,K 7Z-WV ﬂ-e ﬂ-bd ”b E[va] Ra

0.3002505 | 0.2643400 | 0.1801503 | 0.0374545 | 0.3979548 | 0.1653439 | 0.0826719
0.1833275 | 0.3982300 | 0.2713977 | 0.0359950 | 0.3824473 | 0.2490918 | 0.1245459
0.1166647 | 0.4745665 | 0.3234218 | 0.0351629 | 0.3736058 | 0.2968400 | 0.1484200
0.0760744 | 0.5210470 | 0.3550987 | 0.0346562 | 0.3682223 | 0.3259135 | 0.1629567
0.0503631 | 0.5504893 | 0.3751639 | 0.0343352 | 0.3648122 | 0.3443295 | 0.1721647
0.0336669 | 0.5696083 | 0.3881937 | 0.0341268 | 0.3625978 | 0.3562884 | 0.1781442
0.0226493 | 0.5822247 | 0.3967919 | 0.0339893 | 0.3611365 | 0.3641800 | 0.1820900

~Nolalhw vkl X
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The impact of arrival rate on E[L] is shown in “ Figure 17, for different mean batch sizes (g =1/q). It can be
observed that as A increases, E[L] increases for fixed ¢ . For fixed A, E[L] increases with g as it should be. «
Figure 2” depicts the impact of probabilities during regular busy period (7,,7,4) and WV (7, ) versus A for
different . We observe that 7, and 7, increase as A increases, whereas 7, Slightly increases and then decreases.

For fixed A, as q increases, 7z, and 7, decrease whereas 7,,, increases. The intersect points shows that 7, and

Tt are equal at a particular A corresponding to the q .

25 07 7
---g=07 &
—6-g-08 0.6 .’

*
20} |—#—g-09 Pt D
b 0.5M - +-Pbatq=0.6 o /
[ —e—Pbatg-0.8
15 ' 2 —w— Pbd at q=0.6
~ ! S 04| - - Podatg-0.8 i
= 9 ¥
) ’: 8 —#— Pwv at g=0.6
0 ; g o3 PwV at g=0.8
5
. -
] 0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5
A A
Figu. 1. Effect of 4 on E[L] Fig. 2. Effectof A on 7z, and 7,
04 3 7 7
pR——— i —— A Vs.E[L]
0.39 —&— a=0.3[1 -0~ u Vs, E[L]

0.3
1 1.2 1.4 1.6 1.8 2
0 1 ?E[L] 3 4

o

Fig. 3. Effectof ¢ on E[L,,] Fig. 4. Effectof A and  on E[L]
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“Figure 3" plots the impact of service rate during a WV period ¢ on E[L,,, ] for variant reneging rates (<) .
We observe that E[L,,, ] decreases with increase of both ¢ and « . The effect of 4 and g on E[L] is depicted in
Figure 4”. As expected, one may observe that E[L] increases as A increases whereas it decreases with gz . Further, the
intersection point of the two curves at (4,2z) = (1.5,5.5) gives us the optimum value of E[L]. “ Figure 5" shows the
effect of S on E[L, ] for different 2 values. As expected, one may observe that E[L, ] increases as /3 increases
whereas it decreases with z. * Figure 6" shows the impact of reneging rate (&) on E[L,,, ] for different K values. It
can be observed that as « increases E[L,,, ] decreases. We can also observe that single WV has better performance

than MWV for the above parameters. Table 2 shows that the effect of breakdown and reneging on mean system size
E[L]. Observe that E[L] decreases as ¢ increases and E[L] increasesas £ increases.

Table 2: The effect of £ and  on E[L]
0.4 0.5

0.1 1.614433 1.568982 1.527160 1.488487 1.452572 1.419093 1.387781 1.358409 1.330784
0.3 1661921 1.615710 1.573183 1.533852 1.497320 1.463261 1.431402 1.401512 1.373395
0.5 1.711287 1.664312 1.621074 1.581079 1.543925 1.509278 1.476866 1.401512 1.373395
0.7 1.762639 1.714893 1.670939 1.630275 1.592491 1.557253 1.524279 1.493331 1.464211
0.9 1816091 1.767571 1.722894 1.681554 1.643135 1.607297 1.573755 1.542270 1.512636

6. Conclusions

In this paper, we have studied an M */M/1 queueing system with variant WVs , reneging and server
breakdowns during busy period. We have derived probability generating functions of the number of customers in the
system and the corresponding mean system sizes when the server is in different states. We have derived closed-form
expressions for some other performance measures, the rate of abandonment due to impatience. The effect of some
parameters on the performance measures of the system have been investigated and the results are presented in the form of
tables and graphs. The effects of reneging and breakdown paramers on the performance of the model have been shown.

The technique adopted in this paper can be applied to analyze models like M/M */1 queue with variant working

vacations and server breakdowns, inpatient customer M */M/c queue with variant working vacation and un-reliable
servers, etc.
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