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Abstract: Theoretical underpinnings of differential equations have advanced 

greatly, particularly in the twentieth century. This expansion is due to the rapid 

and effective development of supporting mathematical fields (such as functional 

analysis, measure theory, and function spaces), as well as an ever-increasing 

need for applications, particularly in engineering, science, and medicine. The 

Lie infinitesimals method was employed to reduce the nonlinear fourth order 

PDE into an ordinary differential equation then the resulting ODE solved by the 

finite difference method. The Lie infinitesimals method is used to solve 

significantly more complex problems which used in manufacture.  
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1. INTRODUCTION 
In 1870, Lie discovered that all previous 

theories of ordinary differential equations integration 

can be reduced to a general form. In this way, it became 

possible to derive previous ideas from a common basis 

while also developing a larger perspective on 

differential equations theory in general. Adomian et al. 

[1] find different solutions of PDE. Yang et al. [2] find 

exact solutions of nonlinear PDE and also nonlinear 

transformations and reduction of nonlinear PDE to a 

quadrature. He et al. [3] find a new approach to 

nonlinear partial differential equations. Kirchheim et al. 

[4] Studied  nonlinear PDE by geometry in matrix 

space. Rabinowitz et al.[5] used Some minimax 

theorems and applications to nonlinear partial 

differential equations. Rosinger et al. [6] Generalized  a 

new solutions of nonlinear partial differential equations. 

Sirakov et al. [7] Solved uniformly elliptic fully 

nonlinear PDE. Liu et al.[8] Find a simple fast method 

in finding particular solutions of some nonlinear PDE 

[9-12]. find new methods to solve nonlinear PDE. 

Galaktionov et al. [13] find exact solutions and 

invariant subspaces of nonlinear partial differential 

equations in mechanics and physics. Odibat et al. [14] 

used numerical methods for nonlinear partial 

differential equations of fractional order. Reid et al. 

[15] Reduced of systems of nonlinear partial differential 

equations to simplified involutive forms. Sahadevan et 

al. [16] find exact solution of certain time fractional 

nonlinear partial differential equations [17-20] used Lie 

method to solve different type of PDE. The nonlinear 

fourth order PDE was reduced to an ordinary 

differential equation using the Lie infinitesimals 

approach, and the resulting ODE was solved using the 

finite difference method. 

 

2. Lie infinitesimals method 

Consider the generic example of a nonlinear 

differential equation system with p independent 

variables and q unknown functions. 

  (   ( ))                                                    (1) 

 

The term u(k) is the kth derivative of u with 

respect to x, and m is the number of differential 

equations that characterise the system. 

 

Consider a transformation with one parameter,  : 

 ̅   (     )                                                            (2) 

 ̅   (     )                                                            (3) 

 

Where   is the transformation parameter? 

Assume that   and   are sufficiently time-differentiable 

with respect to  . If   is an infinitesimally small value 

of  , the expansion of the variables  ̅ ,  ̅ is defined by: 
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These two equations could be simplified to: 

  ̅        (   )   (  )                  (6) 

 ̅        (   )   (  )                   (7) 

 

Where    and    are the infinitesimal transformations of independent and dependent variables, defined as: 
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The infinitesimal generator associated with (6) and (7) is given by the vector field: 

 

 ̅  ∑   (   )
 

   

 
    ∑   (   )

 

   

 
     (10) 

 

The derivatives of    with regard to the independent variables are found in the field's prolongation. This can be 

summarised as follows: 

 

  ( ̅)   ̅  ∑ ∑   
 (   ( ))
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     (11) 

 

The similarity transformation invariance requirement is defined as follows: 
   

  
 

   

  
                                                                                           (12) 

 

3. Fourth order nonlinear PDE (example) 

Given the fourth order nonlinear PDE: 

         (  )
                                                                              (13) 

 

Now, assuming that Eq. (13) is invariant under the following one-parameter Lie group of transformations 

expressed as 
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Where   is the group parameter and       are the infinitesimals and their corresponding extended infinitesimals 

of order 1, 2, and 4 are the functions  ,   
     ,      ,  presented by 
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Where    is the total derivative operator with respect to   written as? 
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The generator of the one-parameter Lie group or the infinitesimal operator is the differential operator defined as 

   (     )
 

  
  (     )

 

  
  (     )

 

  
                                                      (17) 

 

The corresponding prolonged generator   
( )

  of order (α, 4) is 
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                 (18) 

 

Applying the fourth prolongation   
( )

  to the Eq. (13), we obtain the infinitesimal criterion of invariance 

corresponding Eq. (13), expressed as 

 

           
                                                                     (19) 

 

Substituting the explicit expressions    ,   ,   
 , and       into (19) and equating powers of derivatives up to 

zero, we get an overdetermined system of linear partial differential equations; after resolving this system, the 

infinitesimals functions are given by 
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Where    is arbitrary constant? The corresponding Lie algebra is given by 
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Now, by solving the following characteristic equation 
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Apply chain's rule 
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        ( )    

 

Substitute in eq. (13) we get: 
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4. Finite Difference Method 

Equation (22) can be rewrite as: 

                        ( )     (23) 

 

Using finite difference method 
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Using numerical method (Newton Raphson 

method) we can find the final solution at N different 

values. 

 

                                                                         

(29) 

 4. RESULTS AND DISCUSSION 
Newton Raphson method gives us the final 

solution of equation (13) at different type of N based on 

the equation (29) and by using Matlab code. 
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Fig-1: Solution of fourth order nonlinear PDE 

 

5. CONCLUSIONS 
Reducing of fourth order nonlinear PDE 

equation to ODE can be done by Lie infinitesimals 

method. Finite difference method can be used then to 

solve ordinary differential equation. Numerical method 

such Newton Raphson completes the problem to find 

solution in different values of N. 
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