Abstract: The main objective of the present work to established the fingerprint profile of S. hispida using high performance thin layer chromatography (HPTLC) technique. Preliminary phytochemical screening was done and HPTLC studies were carried out. The scanning was performed using 'CAMAG' densitometer scanner 3V equipped with CATS3 software, at a wavelength of 400 and 254 nm using deuterium lamp. Preliminary phytochemical screening of the methanolic extract S. hispida showed the presence of alkaloids, carbohydrates, phenols, tannins, flavanoids, gums and mucilage. HPTLC fingerprinting of S. hispida methanolic extract showed best results in Toluene: Ethyl Acetate: Formic acid: 5:4:1 solvent system. After scanning and visualizing the plates in absorbance mode at 254 nm, 366 nm and visible light range (400-600 nm after spraying with anisaldehyde sulphuric acid reagent) best results were shown at 400 nm. The Rf values ranged from 0.06 to 0.99. The result showed that out of 15 components, the component with Rf values 0.95, 0.82 were found to be more predominant as the percentage area is more with 28.85% and 12.91% respectively.

Keywords: S. hispida leaf, Phytochemical Screening, HPTLC Fingerprinting.

Introduction

The nature has provided an entire warehouse of remedies to heal ailments of mankind. About 80% of the world's population depends partly or wholly on traditional medicine for its primary health care needs. Botanicals as the key remedy in traditional medical system have been used in medical practice for past epoch and have made a immense association to maintain human health [1, 2]. Spermacoce hispida belong to family Rubiaceae. The Rubiaceae, one of the four largest among the angiosperms, consists of 637 genera and 10,700 species [3]. S. hispida was popularly known as “Nattaichuri” in Tamil or “Shaggy button weed” in English [4].

Fig-1: Spermacoce hispida
Ethno-botanical survey of S. hispida [5, 6]

<table>
<thead>
<tr>
<th>BIOLOGICAL NAME</th>
<th>Spermacoce hispida</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAMILY</td>
<td>Rubiaceae</td>
</tr>
<tr>
<td>SYNONYM</td>
<td>Spermacoce articularis, Borreria hispida, Borreria articularis</td>
</tr>
</tbody>
</table>

VERNACULAR NAMES

- **English:** Shaggy button weed, Jointed buttonweed
- **Tamil:** Nathai-choori, Vetappaccuri
- **Hindi:** Madanaghanti, Sanskrit: Bukah, Madanaghati, Madanghanta, Vasukah; **Malayalam:** Kutalcurukki, Nattacuri, Tardavel, Tartaaval, Thardtvel; **Telugu:** Madana, Madana budatha kaada, Madana kaada, Madana kattu; **Kannada:** Daare botu, Daare kaddi, Madana buddume gida, Madana ganti; **Marathi:** Ghanti-chi-bhaji, Gondi; **Oriya:** Solaganthi.

HABIT

A procumbent, scabrid, hirsute or hispid herb.

HABITAT

Throughout India, up to 900m in the hills and on all dry lands, on the bare slopes, along the way side and in thin layer of soil as a weed. It is common along Madurai, Nilgiris, and Coimbatore.

Ethno-Medicinal Importance

- **Leaves:** Leaf juice is used in conjunctivitis. An extract of leaves is given as an astringent in hemorrhoids and gallstones. The leaves are used as haemostatic, in dental carries and tooth ache.
- **Root:** The root is used for wound healing, dental problems and as an appetizer.
- **Seed:** The seeds are used as a stimulant, demulscent and for the treatment of diarrhoea and dysentery.

MATERIAL AND METHOD

Collection and authentication of plant material

The whole plant of S.hispida was collected from, India, in the month of December, 2016 and authenticated.

Preparation of Extract

The fresh leaves of S.hispida was dried under shade and then powdered with a mechanical grinder. The powder was passed through sieve No 40 and stored in an airtight container for further.

Extraction procedure

The coarse selected plant material was extracted with 1-1.5 liters of methanol continuous hot percolation using Soxhlet apparatus. After completion of extraction, extract was filtered and the solvent was removed by using reduced pressure. The dried extract was stored in desiccators.

Qualitative Phytochemical Analysis

The crude methanolic extract of Spermacoce hispida (MESH) was analyzed for the presence of various phytoconstituents by following standard phytochemical protocols [7, 8].

High Performance Thin Layer Chromatography

The methanolic extracts of S.hispida and S.acuta were used for the HPTLC analysis.

Development of HPTLC Finger Print

Samples were applied in a concentration of 20μl using CAMAG LINOMAT IV sample applicator on HPTLC precoated Plates Silica Gel Merck 60F 254, 0.2mm layer thickness (20 x 20cm) which was used as a stationary phase. The volume of the sample loaded was 20 μl. The scanning was performed using 'CAMAG' densitometer scanner 3V equipped with CATS3 software, at a wavelength of 400 and 254 nm using deuterium lamp.

Detection of Spots

The air-dried plate was viewed in ultraviolet radiation to mid-day light (Fig.2). The chromatograms were scanned by densitometer at 254 nm after spraying with anisaldehyde sulphuric acid. The RF values and finger print data were recorded by CATS3 software, at a wavelength of 400 and 254 nm using deuterium lamp.

<table>
<thead>
<tr>
<th>Type of Constituent</th>
<th>Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>-</td>
</tr>
<tr>
<td>Phenolic compounds/Tannins</td>
<td>+ + +</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>+ + +</td>
</tr>
<tr>
<td>Triterpenoids</td>
<td>+ + +</td>
</tr>
<tr>
<td>Proteins</td>
<td>+ +</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>+</td>
</tr>
<tr>
<td>Glycosides</td>
<td>+ +</td>
</tr>
</tbody>
</table>
Table-2: HPTLC finger print analysis of methanolic extract of S. hispida

<table>
<thead>
<tr>
<th>Extract</th>
<th>Solvent system</th>
<th>No. of peak</th>
<th>RF values</th>
<th>Percent Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol extract</td>
<td>Toluene: Ethyl Acetate:</td>
<td>15</td>
<td>0.06, 0.11, 0.20, 0.31, 0.44, 0.53,</td>
<td>1.14, 1.80, 0.39, 3.86,</td>
</tr>
<tr>
<td></td>
<td>Formic acid 5:4:1</td>
<td></td>
<td>0.56, 0.61, 0.65, 0.70, 0.75, 0.82,</td>
<td>7.05, 3.37, 2.84, 5.60,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.86, 0.95, 0.99</td>
<td>4.87, 6.18, 8.00,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.91, 8.36, 28.85,</td>
</tr>
</tbody>
</table>

Fig-2: HPTLC Plate at 254nm & 366

Fig-3: HPTLC Chromatogram of methanolic extract of S.hispida

RESULT AND DISCUSSION

Preliminary phytochemical screening was done and HPTLC studies were carried out. The scanning was performed using 'CAMAG' densitometer scanner 3V equipped with CATS3 software, at a wavelength of 400 and 254 nm using deuterium lamp. Preliminary phytochemical screening of the methanolic extract *S.hispida* showed the presence of alkaloids, carbohydrates, phenols, tannins, flavanoids, gums and mucilage. The result was tabulated in table 1. HPTLC finger printing of *S.hispida* methanolic extract showed
best results in Toluene: Ethyl Acetate: Formic acid: 5:4:1 solvent system. After scanning and visualizing the plates in absorbance mode at 254nm, 366 nm and visible light range (400-600nm after spraying with anisaldehyde sulphuric acid reagent) best results were shown at 400nm (Table 2 & Fig. 2-3). The Rf values ranged from 0.06 to 0.99. The result showed that out of 15 components, the component with Rf values 0.95, 0.82 were found to be more predominant as the percentage area is more with 28.85% and 12.91% respectively.

CONCLUSION

At the present time, the curiosity in study of natural products is growing quickly, especially as a part of drug discovery programs. In the ethnomedical survey we found that the *S.hispida* was used in conjunctivitis, hemorrhoids, gall stone, wound healing, dental problems and appetizers. The initial study was carried out with HPTLC and the results showed that there are many compounds in *S.hispida*. From the HPTLC studies, it has been found that methanolic leaf extract contain not a single compound but a mixture of compounds and so it is established that the pharmacological activity shown by them are due to the cumulative effect of all the compounds in composite.

REFERENCE