What about Infants with Clefts? A 7-Years Descriptive Cross Sectional Study in Tunisian Pediatric Dentistry Departament

Emna Bourguiba1,2*, Jihene Zaroui1,3, Mohamed Ali Chemli1,4
1Faculty of Dentistry of Monastir, Pediatric Dentistry Department, Dento- Facial Biological and Clinical Approach Laboratory, LR12 ES10, 5019 Monastir, Tunisia, University of Monastir, Tunisia
2DDS, Department of Pediatric Dentistry and Prevention, La Rabta Hospital, 1007, Tunis
3DDS, Associate professor, Department of Pediatric Dentistry and Prevention, La Rabta Hospital, 1007 Tunis
4DDS, Professor, Departement of Pediatric Dentistry and Prevention, La Rabta Hospital, 1007 Tunis

Abstract: The aim of the present communication was to describe characteristics of oro-facial clefts as well as oro-dental clefts’ sequel in new borns admitted in pediatric dentistry outpatient. The secondary endpoint was to expose contribution of pediatric dentist in the multidisciplinary management of oro-facial clefts and to propose a regular program of follow-up that have been recently adopted in our department of exercise. We performed a descriptive cross-sectional study between 2013 and 2020. Age at diagnosis, gender, type of cleft and other associated malformations were enrolled for all patients. Means and frequencies were calculated by Excell software. One hundred and fourteen patients were enrolled. Diagnosis of clefts was made at birth in all patients. Newborns presented cleft lip in 0.88% (n=1), lip-palate in 41.2% (n=47), lip-palate-velar in 14.15% (n=16), palate in 31% (n=19), soft palate in 7.08% (n=8) and hard and soft palate in 15% (n=17). 9% of new borns, admitted in our departement of exercise, had a follow-up. Malocclusions, (17%) / (n =20), were the most frequent sequel observed in our cohort. Oro-facial clefts represent severe malformations requiering multidisciplinary support. Pediatric dentist must be implicated as soon as cleft diagnosis was made. His input helps reducing severe oral domages. His role is later extended to next stages of life in order to intercept and correct consequent malocclusion as early as possible.

Keywords: Oro-facial clefts, pediatric dentist, management, Maxillary expansion, Surgery.

INTRODUCTION

Oro-facial clefts are the most common congenital malformation of the face [1]. Its worldwide prevalence is 1 in 700 live births and close to 1 in 2500 in African populations [1]. To our knowledge, there were no previous descriptive studies in pediatric dentistry sections about this congenital defect in spite of continuous and expanding care, since the advent of pediatric dentistry in Tunisia in the 80 s.

Pediatric dentist is considered a part of multidisciplinary team approach of those infants [2, 3]. A specialized dental care from birth until 15 years old is recommended for infants clefts, and it will depend on type of clefts, associated syndromes, number of surgical cleft repair, sequel diagnosed and regular follow-up [1, 3, 4].

We aim to describe characteristics of oro-facial clefts in new borns as well as oro-dental clefts’ sequels’ distribution in pediatric dentistry outpatient. Our second endpoint is to propose an oro-dental schedule for infants with clefts from birth until 15 YO in order to regularize their dental management in synchronisation with surgical management.

MATERIAL AND METHODS

We performed a descriptive cross-sectional study between 2013 and 2020 in the department of pediatric dentistry at Rabta university hospital in Tunis.

Clinical charts of infants with oro-facial clefts were extracted from hospital archives. Data concerning patients’ names, age at diagnosis of the clefts, age at consultation in pediatric dentistry department, gender, number and type of clefts, laterality and completeness of clefts syndrome associated, short and long term...
follow-up, clefts sequel, age of sequel’s diagnosis and management of cleft sequel were enrolled. Means and frequencies were calculated by excel software.

RESULTS AND DISCUSSION

One hundred and fourteen patients were enrolled. The prevalence of infants with clefts in the pediatric dentistry outpatient is 0.62 %. Diagnosis of clefts was made at birth in all patients (12 days +/- delta = (26 days)/median 6 [1days → 7 months]). Boys were affected more than girls with sex ratio 1:3. Newborns presented complete clefts in 26.54% (n=30), incomplete clefts in 1.76 % (n=2), bilateral clefts in 13.27% (n=15) and unilateral clefts in 25 % (n=28).

Types of clefts were lip in 0.88% (n=1), lip-palate in (n=47), palate in 31% (n=19), soft palate in 7.08 % (n= 8) and hard and soft palate in 15 % (n=17).

Non syndromic orofacial clefts presented 85.96 % (n=99) whereas syndromic form was noted in 14.03% (n=15). Pierre Robin syndrome was the most prevalent one (40 %). Consanguineous marriage, twin pregnancy and risky pregnancy are some of the prenatal characteristics revealed in our study.

Only seven point eighty nine percent (7.89 %) of newborns with clefts had a regular follow-up, and twenty six point thirty one percent (26.31 %) of infants were lately reviewed with oro-dental clefts squeal. Endognatia (62 %), agenesis of maxillary lateral incisor (5 %), mobility of premaxilia (10 %), dental dilacerations (14 %), and early childhood caries (9 %) were types of squeals observed in infants after surgical cleft repair.

Oro-facial clefts is the most common congenital human malformation [5, 6]. It is due to a failure of fusion of maxillary and medial nasal prominences or between the palatal processes resulting in clefts of varying extent , unilaterally or bilaterally [5].

Our study has shown two descriptive aspects of oro-facial clefts. It has, firstly, proven its distribution in a part of natal Tunisian population and, secondly, described clefts’ squeals’ distribution in the pediatric dentistry population.

In one hand, our study has included a significant sample in comparison with international ones [7, 8]. Our study, in concordance with Mossey et al. 2009 [9], has confirmed that this defect is more prevalent in boys than in girls , and that complete unilateral clefts of lip and palate is the most frequent type diagnosed at birth [10].

Syndromic and non-syndromic orofacial clefts is a classification widely used in literature [6, 11]. In fact, some facial malformations like Down syndrome, Pierre Robin syndrome may be associated to orofacial clefts as proven in our study [12–14]. Genetic factors and chromosomal aberrations may be hidden behind [1]. Besides, some maternal environmental factors (nutritional deficiencies, exposure to X-ray , maternal illness, tobacco) can lead to a non-syndromic oro-facial cleft form [6, 11]. In our study, data concerning maternal history and genetics aberrations were not included because they were not detailed during clinical interview.

In the other hand, we have concluded that, in north of Tunisia; there is a late management in pediatric dentistry section after surgical cleft repair. That may be due to a lack of mother’s sensibilization, to the absence of a standardized oro-dental care program in such cases and to a long period of surgical cleft repair and medical impairment especially in cases of syndromic forms. So that a wide range of squeals are observed in clefts area at different ages of diagnosis. Malocclusions were the most frequent squeal observed in our cohort. That may be due to fibrous scars induced by early surgical cleft repair ,as long as late interceptive and orthodontic treatment [15, 16].

Besides, dental anomalies of form and number are frequently observed especially in the maxillary lateral incisors site [5,10,17]. That was explained by a deficiency of blood and mesenchyme support on the cleft area [5, 18].

CBCT is recommended in the European and American guidelines for the rehabilitation of lip and palate clefts [19]. That gave the rise to the use of CBCT images for the examination of dental anomalies in clefts side and on pre and post- grafting expansion when there is a clinical benefit and rational doses are used [17,19].

A long-term multidisciplinary management, from birth till adulthood, is required in cases of oro-facial clefts [3, 20]. It can be helpful in ensuring that the child undergoes proper specialty evaluations and in determining the most suitable and coordinated treatment options [1]. A specialized dental team support is then needed [1, 3]. The pediatric dentist provides general oral hygiene and dental advice , monitor dental development and jaw growth by insuring a regular program of follow-up and management, once standardized with surgeon [3, 16, 20, 21]. That one may normalize the inter-arch relationship, guarantee a normal midfacial growth and may avoid unnecessary surgical procedures [16, 20]. Functional therapy, pre-grafting expansion, slow and rapid maxillary expansion have shown a considerable results in those cases [13, 19, 22, 23].

In fact, the lack of a clear and normalized oro-dental follow-up program, in spite of a multidisciplinary approach from birth till adulthood in our department of
exercise, may have led to a high percentage of clefts’ sequels and late dental management.

For the best management of children born with a cleft, a tertiary prevention program has been adopted for functional rehabilitation, growth monitoring and protection of the child's psychology. For those reasons, we have proposed, in our department of exercise, an oro-dental schedule, for infants born with clefts, from birth by restoring sucking function, and during childhood and adolescence by various prosthetic and interceptive appliances.

The diagram below (figure 1) summarizes the supply of pediatric dentist in the multidisciplinary management of oro-facial clefts after being normalized with surgeons.

New regular programs of follow-up have been adopted in the department of pediatric dentistry at Rabta university hospital is materialized by figure 2.

A future prospective study following the proposed program of follow-up is recommended. It needs to be generalized in all over the country. So that the prevalence will be determined in comparison with total live births and results will be more significant.

**CONCLUSION**

Prenatal diagnosis of clefts and early management may help to initiate treatment on time and on a proper manner. From a surgical point of view, the ideal timing of cleft repair is not yet known, but pre-surgical treatment plan is necessary in order to reduce scars extension and to achieve more aesthetic results. Dental team support starts from re-establishing sucking function and continue during temporary, mixed and permanent dentition, in order to normalize facial growth and prevent profound squeals.

**REFERENCES**

2. Yang, C. J., Pan, X. G., Qian, Y. F., & Wang, G. M. (2012). Impact of rapid maxillary expansion in unilateral cleft lip and palate patients after...


© East African Scholars Publisher, Kenya 108