Clinical Characteristics of Brain Abscess in a Developing Country, a Number of Cases

Juárez-Rebollar Daniel1, Juárez-Rebollar Alejandra Giselle2, Sosa-Martínez María Del Rosario3, Valdés-García Javier3, Broc–Haro Guy Gilbert4

1PGY4 Neurosurgery, Regional Hospital Lic. Adolfo López Mateos, México
2OMFS National Medical Center “Siglo XXI”, Mexico City
3MD Neurosurgery, Hospital Lic. Adolfo López Mateos. Mexico City
4Director of the Department of Neurosurgery, Hospital Lic Adolfo López Mateos, Mexico City

Abstract: Brain abscess has been considered a rare infection; it is characterized by a collection of pus in the brain parenchyma. Different studies talk about the management and medical treatment with antibiotic regimens (at the beginning of therapy, the antibiotic is chosen empirically), among the most used are vancomycin, third-generation cephalosporins, clindamycin, trimethoprim-sulfamethoxazole, aztreonam, metronidazole, fluoroquinolone, and fluconazole when it is a fungal-type infection, and linezolid has shown promising results. Surgical management depends on the size, location, and characteristics of the brain abscess; it is suggested in the literature for small brain abscess do the aspiration and eradicates the purulent material, and in a big abscess (> 2.5cm) performs craniotomy and resection. A decrease in the degree of mortality related to brain abscess has been reported. That is why this study is presented, carried out over three years (2018 -2021) showing the results obtained, as well as the frequency of patients with brain abscess treated in the service of neurosurgery, of the Regional Hospital “Lic. Adolfo López Mateos”, in Mexico City. A series of cases is presented showing the evaluation and diagnosis protocol used in Neurosurgery and the clinical-epidemiological characteristics that the patients gave.

Keywords: Brain abscess, surgical management, cerebritis, infection.

INTRODUCTION

Brain abscess are defined as a collection of pus located in the brain parenchyma, the presence of a triad consisting of fever, headache, and focal signs. Brain abscess are a rare pathology with a long evolution that has had better treatment thanks to medical advances, antibiotic therapy, scientific and technological advances. Only on some occasions, it causes death [1]. Since the 19th century, series have been reported to provide more information on brain abscess [1]. Few significant case series are known, and most are from studies carried out over long periods of time [2-6]; for example: in 1973, Kao et al. reported some of the clinical characteristics of 26 cases of brain abscess with surgical intervention. However, not all the results of hospital management were obtained, mainly [2, 3]. In 1980, small series of subjects related to this infection were also reported [1]. There is a series of 16-year-old cases (1989-2005) carried out in Chile [4] where variables such as age, gender, risk factors, etiology, clinical manifestations, and location were studied. These authors were referring that they presented some inconveniences in the data collection. On the other hand, in 2005, in Italy 100 cases of brain abscess were reported in 17 years [5]. Another representative series was carried out in Bangladesh, from July 1999 to June 2013, 162 patients diagnosed with brain abscess were reported in 14 years [6]. However, the majority of investigations in this regard speak about the generalities of the infection [7-11]. Brain abscess can have an idiopathic origin, arise spontaneously, or be associated with factors such as intravenous drug use, congenital heart defects, and infective endocarditis. More cases have been reported in patients with immunosuppression, or with a contiguous focus of spread of the infection to the adjacent central nervous system (infection of otic, dental origin, concerning the paranasal sinuses, among others) [10-14]. The brain abscess is more frequent in men (the literature reports 70% of the cases in men) and the majority has been young patients [10, 11, 15]. Brain abscess are usually staged in 4 stages [3, 16]; (table 1).

*Corresponding Author: Juárez-Rebollar Daniel
The pathogens related to bacterial brain abscess are associated with different factors, such as the patient's age, medical conditions, previous surgeries, time of evolution, origin, type of infection, etc. [3] Microorganisms most frequently isolated are Viridians Streptococci, Staphylococcus Aureus, Gram-negative bacilli, and anaerobes, however other resident and opportunistic species will be found depending on the origin of the infection [1, 17]. Generally, the imaging studies are correlated to the histopathological stage and the evolution of the infection. In the initial phase (cerebritis), a diffuse hypodense area is observed in the CT scan, which, when viewed with contrast, reveals a halo. Simultaneously, in encapsulation, the lesion will have a more hypodense center (central necrosis with liquefaction, surrounded by a hyperdense halo that is the capsule) and intensifies contrast material is applied. In the MRI, cerebritis looks like a hypointense image on T1 and hyperintense on T2 with ring enhancement. When they progress and encapsulate, they show a hypointense center on T1 and hyperintense on T2 with an isointense to moderately hyperintense on T1 and hyperintense on the T2 capsule. By adding gadolinium contrast, the capsule has more intensity in the halo and its defined edges [19]. The treatment is usually dual, surgical, and medical (only some cases can be treated with medical therapy only) [19, 20]. Antibiotic treatment is started empirically with a high dose of a combination of antibiotics; among the most used are: cephalosporins (ceftriaxone/cefuroxime), meropenem, flucloxacillin, vancomycin, and metronidazole. The scheme is maintained for 4-6 days and is subsequently modified to antibiotic sensitivity and is maintained for 4-8 weeks according to the patient's response. A low-dose corticosteroid is used to control perilesional edema (which occurs in the first 5-7 days). In some patients, anticonvulsants are also added [16]. Surgical management is based on aspiration or resection of lesions with a diameter >2.5 cm, depending on the size of the lesion [1]. This can be performed through a burr hole, craniotomy, or by stereotaxic surgery (invasive procedure with less postoperative morbidity and is used for diagnosis and treatment); with the techniques mentioned above, it is possible to perform drainage or resection of the abscess, and the installation of an external ventricular drain in severe cases with ventricular eruption [4]. With the help of imaging studies, the development of surgical techniques and the use of antimicrobials with better penetration into the CNS has improved the prognosis of patients with brain abscess [4, 21].

Number of cases

The following series of cases is a compilation of the observation for three years (2018-2021), reporting the frequency of patients with a diagnosis of brain abscess treated in the neurosurgery service of the Regional Hospital “Lic. Adolfo López Mateos”. A total of 13 patients were obtained. The evaluation and diagnosis protocol that was used was: the clinical correlation, the antecedents, and the subsequent imaging evaluation, a simple and contrasted skull tomography was performed, as well as magnetic resonance imaging with spectroscopy and diffusion sequence; given the high suspicion of the lesion, decided to carry out a surgical procedure. For this, took the location of the lesion, accessibility, and volume took the place of the lesion, accessibility, and volume into account, as well as the maximum diameter, taking as a cut-off point (2.5 cm) were treated with a triple antibiotic scheme and later with monoschema of intravenous linezolid for two weeks and later for six weeks orally with monitoring in the outpatient clinic, as illustrated in table 2; As observed in our hospital center, men are predominant in a 1.6: 1 ratio, with a median age of 51 years [19-77 years], the most frequent comorbidity was Systemic Arterial Hypertension; The initial symptom was a headache, reported in 53% of the cases, only in two instances the primary infectious focus was not identified, as regards cryptogenic, the rest of the cases located the origin, the pulmonary being more frequent by 46%. The hemisphere with the most significant involvement was the right, the regions with the most involvement were the frontal lobe 69%, and the average volume of the lesion was 27.6 cc, with a maximum diameter of 4.65, with expansive lesions (Image 1).

Table 1: Stages of a brain abscess and characteristics

<table>
<thead>
<tr>
<th>STAGE</th>
<th>EVOLUTION</th>
<th>CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early cerebritis</td>
<td>1-4 days</td>
<td>Neutrophil accumulation, tissue necrosis, edema, Activation of microglia and astrocytes</td>
</tr>
<tr>
<td>Late cerebritis</td>
<td>4-10 days</td>
<td>Lymphocyte and macrophage predominance</td>
</tr>
<tr>
<td>Early capsular formation</td>
<td>11-14 days</td>
<td>A highly vascular capsule is formed; in this way, the adjacent tissue is kept safe</td>
</tr>
<tr>
<td>Late capsular formation</td>
<td>>14 days</td>
<td>Maturation of the abscess the capsule thickens (if it is more than three weeks old), excision can be performed.</td>
</tr>
</tbody>
</table>

© East African Scholars Publisher, Kenya
Image-1: Representative case. Twenty-nine years female, with the onset of diabetic ketoacidosis, after resolving the crisis, she presents headache, right hemiparesis, and seizure; in the emergency room, take a CT. Panel A. Bone window coronal plane observed a hyperdensity inside of the sinuses. Panel B contrast axial plane, heterogeneous image with enhanced of the lesion parietal and frontal extension. Panel C axial plane contrast CT changes posttreatment by craniotomy and resolution of the abscess.

Only in two cases was puncture of the lesion and subsequent resection performed, the most frequent procedure was resection of the capsule, all patients received empirical antibiotic management with a triple scheme with metronidazole, vancomycin, and ceftriaxone, once with cultures and identified microorganism, changed the antibiotic plan to monoschema with linezolid, intravenous impregnation and later orally, all patients underwent a controlled study at three months, six months and after one year (Image 2), only three were reported cases of mortality from systemic complications; 10 cases with notable improvement in the ranking scale.

Image-2: Representative case. Panel A. CT axial plane shows a lesion with enhanced ring sign and hypodense area inside. Panel B. MRI T2 axial plane with important edema perilesional in the frontal lobe with mass compression to the left horn of ventricle. Panel C. Spectroscopy with increased amino-acid peak, the elevation of the lipid/lactate peak. Panel D. Post-surgery CT with complete resolution at three months. Panel E and F MRI axial and coronal plane T1 and T2 sequences, at six months and one year of following.
DISCUSSION

The cases presented in this study were 13 patients with a diagnosis of brain abscess in 3 years, which represents arithmetic mean of 4.33 patients per year; compared with other cases series studies such as that of Fica et al. four who reported 30 cases in 16 years or large series such as Lu, Chang et al. [3], Hossain et al. [16], Menon et al. [23], Kaczorowskay [24] Sharon, et al. [25]. On the other hand, one of the differences found in this study for others was age since the current series of cases had a median of 51 years. In other articles, it is mentioned that brain abscess has generally been reported among the 2nd and 3rd decade of life [8, 23, 24] although there are studies that report patients with brain abscess in the 6th decade [10, 11] like this study. The most frequent comorbidity was systemic arterial hypertension, unlike other articles such as that of Alvis et al. [8], Menon et al. [23], those who express greater frequency in diabetic patients; However, in most studies, the association of brain abscess with a state of immunosuppression of the patient is reported as in this one [8, 10, 11, 23, 25]. In this study, the origin of brain abscess was 46% pulmonary and a little more than 50% due to other causes (including endocarditis, odontogenic, sinusitis, cryptogenic, among others); Concerning other studies, it is mentioned that the most common route of dissemination is hematogenous, related to pneumonia, empyemas, and endocarditis. Besides, it is mentioned that other routes are by direct dissemination (such as head trauma, facial procedures, placement of catheters, or ventricular drains, among others.) [26, 27, 28]. One of the considerations regarding the site most affected by a brain abscess is that other authors highlight the location in decreasing order: Fronto-temporal, Fronto-parietal, Cerebellar, and Occipital lobe [29]. Morgan et al. [30] They reported in a series of 86 cases 22 brain abscess in the parietal lobe, 21 in the frontal, 18 in the temporal, five occipital, four hemispherical, 12 cerebellar, and six multiple [30]. In this article, the most affected hemisphere was the right and 69% of the cases in the frontal lobe, which coincides with that mentioned by Shachor et al. [31]. Regarding the average volume obtained of purulent
Brain abscess is still considered an infection that has to be treated urgently. The importance of reporting series of cases allows showing the number of cases that occur at a particular time. The characteristics they have since most of the reports are have been carried out in developed countries. They could influence the frequency of cases, as well as make a comparison with what was found by other authors in other studies. With this, a broader perspective is obtained mainly in terms of progress, treatment, and epidemiological data, which at the same time it, allows knowing the population under study in developing countries. This study shows some differences to other studies, mainly in that mortality was not as high as in studies carried out a few decades ago, where brain abscess was considered to have a high mortality rate, management, and treatment, as well as An early diagnosis, has allowed this rate of deaths related to the disease to be reduced over the years.

Funding

We have not received financing nor do we have sponsors to carry out this study.

Competing interest statement

The authors have declared no competing interest. Any institution has not funded the study. We confirm all relevant ethical guidelines have been followed.

REFERENCES

34. Duazuary, Ed. (2016). Differential Diagnosis of Ring Enhancement Brain Lesions in computed tomography and magnetic resonance imaging. searchgate.net/publication/307851529_Diagnostic_o_diferencial_de_lesiones_Ring_enhancement_brains_in_computed_tomography_and_magnet ni_resonance

